
Engineering Quality Requirements using
Quality Models

Klaus Lochmann
Chair for Software & Systems Engineering

Technische Universität München
Boltzmannstr. 3, 85748 Garching b. München, Germany

lochmann@in.tum.de

Abstract—In this paper ongoing research for a PhD-thesis is
presented. The objective of this thesis is to develop an approach
for engineering quality requirements. Quality requirements are
an important part of requirements on software and their thor-
ough specification is a prerequisite for the successful development
of high quality systems. The presented approach relies on a
quality model, that defines software quality and that serves as
a structured knowledge-base. The quality model is integrated
with an use-case based approach for eliciting and analyzing
quality requirements. This way an effective communication with
stakeholders as well as the quantification of quality requirements
is assured.

I. INTRODUCTION

It is generally accepted that the development of high-quality
software is an important challenge to the industry. Nonetheless
the term of quality itself remains unclear and ambiguous since
quality itself is a “complex and multifaceted concept” [1].
Despite the variety of definitions of quality, most of them
have in common that conformance to requirements is seen
as a substantial part of quality.

Although the importance of an accurate specification of
requirements for a successful development is generally ac-
cepted [2], requirements on the quality of a system – called
quality requirements – are often neglected [3].

A. Problem Statement

The reasons for the difficulty in specifying quality re-
quirements become evident in typical characteristics of them.
One characteristic is the cross-cutting nature, that means
that quality requirements usually are intermingled with other
requirements as well as with development artifacts. Therefore
they cannot be specified separately and their realization is not
confined to a single part of the system. Another important
characteristic is the interacting nature of quality requirements.
Different quality requirements are influencing each other in the
realization. This means that improving one quality aspect may
worsen another one.

These characteristics lead to typical problems observed in
practice. Mostly, quality requirements are not specified in suf-
ficient completeness, because the stakeholders have problems
in expressing their quality requirements or they express them
in a very vague manner. Furthermore, the expressed require-
ments are often not correct, i.e. they are either impossible or

unrealistic to realize. Other problems attributed to correctness
are subjective estimations, missing context information, and
oversimplifications. Because quality requirements are often
specified in a vague manner, they do not fulfill the criterion
of verifyability: Requirements are defined as verifiable, if
there exists some cost-effective method that can check that
the software product meets the requirement [4]. Also the
operationalization of quality requirements poses problems.
They are often not sufficiently concretized, i.e. they give no
indication how they can be realized.

B. Objective

The main research question can be formulated as follows:
How can quality requirements be unambiguously spec-
ified, to be supportive during development, and to be
verifiable at the end of development?

The developed approach has the objective to support the en-
gineering of quality requirements in a manner that the resulting
requirements fulfill the characteristics of good requirements
according to IEEE-830-1998 [4]; the requirements should be:
Correct, Unambiguous, Complete, Consistent, Ranked for im-
portance and/or stability, Verifiable, Modifiable, and Traceable.

II. ENVISIONED SOLUTION

The underlying concepts of the developed approach are a
value-based view on quality [1] and the cost-of-quality con-
cept [5]. The basic idea of these concepts can be summarized
as follows: high quality of a product means, that it incurs low
costs and provides high benefits.

In our approach the costs are expressed in terms of effort
needed to perform activities on and with the system. In this
terms high quality means that the activities can be performed
with low effort. It has to be noted, that the activities are
not limited to end-user interaction with the system, but they
comprise all activities from all stakeholders, e.g. maintenance-
activities from developers, attack-activities of intruders, etc.

To define quality by the means of activities and their costs,
activity-based quality models (ABQM) [6], [7] are used. The
idea of an ABQM is to break down quality into detailed
facts and their influence on activities. For ABQMs an explicit
meta-model was defined, that consists of the following ele-
ments (see Fig. 1): An entity can be any thing, that can have an



Activity

Fact

Entity

Attribute
Impact (+/-)

Fig. 1. Activity-based Quality Model

Derive
Requirements

Quantify 
Prioritize

Derive
Activities

Derive 
Use-Cases

Identify
Stakeholders

1 2 3 4 5

Fig. 2. Requirements Engineering Process

influence on the software’s quality, e.g. source code. These en-
tities are characterized by attributes such as STRUCTUREDNESS

or CONFORMITY. The combination of an entity and an attribute
is called a fact, e.g. [source code | STRUCTUREDNESS]. An impact
specifies whether a fact has a positive or negative influence on
an activity, e.g. [source code | STRUCTUREDNESS] +−→[Maintenance].

Since realistic quality models can contain a very large
number of entities and activities, hierarchies were introduced
as a means for structuring. For example the activity hierarchy
contains the top-level activity Maintenance, which is refined to
sub-activities like Code comprehension and Modification.

The supposed requirements engineering process (see Fig. 2)
incorporates the concept of use-case modeling and relies on
the ABQM as a knowledge-base to support the elicitation
and analysis of requirements. A similar approach has been
proposed by Wagner et al. [8].
In step 1© Identify Stakeholders all stakeholders relevant to the
system-to-be are identified. This step makes use of classical
RE methods, such as goal modeling to find all stakeholders
and their interests.
In step 2© Derive Use-Cases use-cases for each stakeholder
are derived, whereby beside end-users also use-cases for
stakeholders interacting in other ways with the software have
to be regarded, e.g. a maintainer could perform the use-case
“process a change-request”. In this step the ABQM is used as
a knowledge-base by providing activities that can be used as
suggestions for use-cases.
In step 3© Derive Activities to the single steps of the use-cases,
corresponding activities in the ABQM are identified. If no
corresponding activities can be found, new ones are added to
the ABQM in order to extend the knowledge-base.
In step 4© Quantify / Prioritize a quantification and prioritization
of the activities is taking place. The activities are quantified
by the stakeholders according to the costs they incur; and
estimation of these costs is done by information like frequency
of execution, duration, etc.
In step 5© Derive Requirements based on the given activities, the
ABQM is used to derive detailed requirements. That means,
starting from the activities, all impacts in the ABQM are traced
to facts. Each fact expresses a (un-)desired characteristic of the
system, which can directly be turned into a requirement.

III. EXAMPLE

A case-study adopting a similar approach has been con-
ducted in the context of security [9]. In this case-study the
stakeholder “attacker” and its intention to attack the system –
in our case Tomcat 6.0 – was considered. The attack-scenarios
were modeled as misuse-cases. The ABQM was build of

available security-guidelines and was then used to derive
detailed requirements. To validate the approach, the derived
requirements were compared to published vulnerabilities of
the web server. The result was that 16 of 19 (84%) of
the requirements were referring to actual vulnerabilities and
their implementation in Tomcat would have prevented the
vulnerabilities.

IV. CONCLUSION

In this paper a concept for an approach for engineering
quality requirements has been presented. By using use-cases
in a structured way the communication with the stakeholders
is improved and the completeness and correctness of require-
ments is increased. Furthermore, the quality model enables the
refinement and operationalization of the quality requirements,
to eventually get verifiable requirements. Through the link of
detailed requirements to activities, use-cases, and stakeholders
a traceability between requirements is established.

The next steps in this research will be the conduction
of industrial case studies, to get experiences with this RE
method and to further elaborate the method. Another step
for further research is to incorporate this RE approach into
existing artifact-based RE approaches.

ACKNOWLEDGMENTS

This work has partially been supported by the German
Federal Ministry of Education and Research (BMBF) in the
project QuaMoCo (01 IS 08023B).

REFERENCES

[1] D. A. Garvin, “What does product quality really mean,” Sloan Manage-
ment Review, vol. 26, no. 1, pp. 25–43, 1984.

[2] B. W. Boehm, “Software Engineering Economics,” Software Engineering,
IEEE Transactions on, vol. SE-10, no. 1, pp. 4–21, 1984.

[3] M. Glinz, “On Non-Functional Requirements,” in Requirements Engi-
neering Conference, 2007. RE ’07. 15th IEEE International, New Delhi,
India, October 15-19, 2007, pp. 21–26.

[4] “IEEE recommended practice for software requirements specifications,”
IEEE Std 830-1998, pp. –, 1998.

[5] A. V. Feigenbaum, “Total Quality Control,” in Harvard Business Review,
1956, vol. 34 (6), pp. 93–101.

[6] F. Deissenboeck, Stefan Wagner, M. Pizka, S. Teuchert, and J.-F. Girard,
“An Activity-Based Quality Model for Maintainability,” in Proceedings
of the 23rd International Conference on Software Maintenance (ICSM
2007). IEEE CS Press, 2007.

[7] M. Broy, F. Deissenboeck, and M. Pizka, “Demystifying Maintainability,”
in Proceedings of the 4th Workshop on Software Quality. ACM Press,
2006.

[8] S. Wagner, F. Deissenboeck, and S. Winter, “Managing quality require-
ments using activity-based quality models,” in WoSQ ’08: Proceedings
of the 6th international workshop on Software quality. ACM, 2008, pp.
29–34.

[9] S. Wagner, D. Mendez Fernandez, S. Islam, and K. Lochmann, “A
Security Requirements Approach for Web Systems,” in Workshop Quality
Assessment in Web (QAW 2009), 2009.


