
The Quamoco Tool Chain for
Quality Modeling and Assessment∗

Florian Deissenboeck, Lars Heinemann, Markus Herrmannsdoerfer,
Klaus Lochmann, Stefan Wagner

Technische Universität München, Garching b. München, Germany

ABSTRACT
Continuous quality assessment is crucial for the long-term
success of evolving software. On the one hand, code anal-
ysis tools automatically supply quality indicators, but do
not provide a complete overview of software quality. On
the other hand, quality models define abstract characteris-
tics that influence quality, but are not operationalized. Cur-
rently, no tool chain exists that integrates code analysis tools
with quality models. To alleviate this, the Quamoco project
provides a tool chain to both define and assess software qual-
ity. The tool chain consists of a quality model editor and
an integration with the quality assessment toolkit ConQAT.
Using the editor, we can define quality models ranging from
abstract characteristics down to operationalized measures.
From the quality model, a ConQAT configuration can be
generated that can be used to automatically assess the qual-
ity of a software system.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—Software
Quality Assurance (SQA)

General Terms
Management, Measurement

Keywords
Quality Assessment, Quality Modeling, Tool Chain

1. INTRODUCTION
To effectively manage software costs as well as to prove the

excellence of software products, a comprehensive assessment
of software quality is essential. Two basic ingredients are
currently available to support this quality assessment.

First, existing code analysis tools can be applied to obtain
indicators for software quality. However, each code analysis
tool only focuses on a certain aspect of software quality.

∗The presented work was funded by the German Fed-
eral Ministry of Education and Research (BMBF), grant
“Quamoco, 01IS08023B”.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00.

To obtain a complete overview of the quality of a software
system, the results of many code analysis tools need to be
aggregated. However, due to the heterogeneity of the results
of different code analysis tools, it is often unclear how to best
aggregate them.

Second, quality models define abstract characteristics that
influence software quality. However, existing quality mod-
els do not provide sufficient detail to operationalize them
for assessing software quality. Therefor, the abstract qual-
ity characteristics need to be decomposed until they can be
quantified by measures. The measures in turn can be deter-
mined by applying existing code analysis tools and manual
techniques like code reviews.

To support a comprehensive assessment of software qual-
ity, adequate tool support thus needs to integrate both code
analysis tools and quality models.

Problem. Currently, there is no tool chain that integrates
quality models with code analysis tools. However, such a
tool chain is required to operationalize the quality models
for assessing software quality. When operationalizing qual-
ity models, many measures and aggregations need to be de-
fined to get a complete overview of the software quality. As
a consequence, quality models can become quite large and
complex. To master this complexity, adequate tool support
for editing quality models is required. Due to the size of the
quality models, the quality of a software product cannot be
assessed manually. Further tool support is thus required to
automatically assess a software product using the measures
defined in the quality model. The analysis results need to
be collected and integrated according to the aggregations
defined in the quality model.

Contribution. In this paper, we present the tool chain for
defining and assessing software quality that has been devel-
oped in the Quamoco1 project. To define software quality,
we have implemented a quality model editor that is based on
an explicit meta model. The editor provides different views
to master the complexity of operationalized quality mod-
els. Using the editor, the user can define the aggregations
of quality characteristics based on the measures that quan-
tify the quality factors. To assess software quality, the tool
chain integrates with the existing quality analysis toolkit
ConQAT2 [2], which we extended with additional function-
ality for reading a quality model and assessing a software
system according to the model. The quality model editor
supports the automated generation of a ConQAT configu-

1http://www.quamoco.de
2http://www.conqat.org

ration. Using the configuration, the quality model and the
software system as input, ConQAT produces a dashboard
that allows to inspect the results of the quality assessment.

2. RELATED WORK
The literature proposes a large number of quality mod-

els [1, 4, 5] which define the term quality by decomposing it
into more tangible attributes. However, these quality mod-
els remain on a high level of abstraction, and no tool support
exists to conduct quality evaluations based on them.

Besides, countless code analysis tools support tasks as dif-
ferent as bug pattern identification, clone detection and de-
pendency cycle analysis. These tools, however, focus on very
specific aspects of software quality and are, hence, ill-suited
for a holistic quality assessment. Moreover, these tools pro-
vide sophisticated analysis techniques, but often fail to sup-
port quality engineers in interpreting the analysis results.

Multiple dashboard tools (QALab3, Sonar4, XRadar5) are
built on top of the specialized quality analysis tools. Dash-
board tools collect, aggregate and visualize data of metric
calculators, static code checkers, and other automatically ac-
cessible sources. They aim at providing a quality overview
of a software system to monitor and control development ac-
tivities. However, none of these tools establishes an explicit
link between the specified quality requirements (provided by
the quality model) and the actual quality characteristics of
a software system (provided by the code analysis tools).

Besides experimental research tools like [8, 10], the re-
search project Squale6 develops an explicit quality model
and a tool for evaluating software products. The main dif-
ference to our approach is that Squale uses a fixed qual-
ity model, while our tool chain offers an editor to specify
project-specific quality models. Moreover, Squale supports
only a fixed set of code analysis tools. In contrast, the edi-
tor and ConQAT allow a flexible configuration and integra-
tion of code analysis tools, without the need to change the
source code. Finally, Squale is limited to automated mea-
sures, while Quamoco allows to seamlessly integrate results
generated by manual analyses like inspections and reviews.

3. QUAMOCO TOOL CHAIN
The Quamoco tool chain7 consists of the graphical quality

model editor used for quality modeling and the quality as-
sessment toolkit ConQAT used for quality assessment. Con-
QAT is open source software licensed under the Apache 2.0
license and the quality model editor will be released as open
source in 2011. The complete tool chain presented in this
paper is available on the Quamoco website8. Figure 1 gives
an overview of the Quamoco tool chain. The following sec-
tions detail the two main parts of the tool chain.

Quality Modeling. The Quamoco quality model editor
is an Eclipse/EMF-based tool, supporting to author quality
models based on a defined meta model. Quality models for
real-life quality evaluations grow large (several hundreds of
model elements), thus requiring adequate tool support.

3http://qalab.sourceforge.net
4http://www.sonarsource.org
5http://xradar.sourceforge.net
6http://www.squale.org
7http://www.youtube.com/watch?v=D9sKbctf0Cw&hd=1
8http://www.quamoco.de/webportal/icse2011.zip

Code,
manual findings,

tool reports

QM Editor

generate

ConQAT config

Quality Assessment
Report

Figure 1: Quamoco Tool Chain

The quality meta model extends activity-based quality
models [3] by operationalization concepts, code analysis tools
and aggregation formulas. A detailed explanation of the
meta model is beyond the scope of this paper. The meta
model consists of 18 model entities and 41 relations. To
effectively model instances of this meta model, the editor
provides three hierarchical views that allow to browse and
edit the model represented as a tree. Additionally, there are
three table views, with filtering and sorting capabilities.

Based on the meta model, a large number of consistency
rules are defined. These rules are automatically checked by
the editor. All rule violations are shown in a list view, and
by clicking an entry, the editor navigates to the affected
element. Furthermore, all elements with rule violations are
marked with warning symbols.

Since the quality model is used to conduct concrete qual-
ity evaluations, it also contains aggregation formulas and
references to code analysis tools. For these formulas, we de-
veloped a scripting language that is able to perform various
mathematical calculations and that can refer to elements in
the quality model. The editor supports this language di-
rectly and performs syntax checks of it.

To manage large quality models in practice, a modular-
ization concept was introduced. Quality models can be split
into modules, having explicit dependencies between them.
The editor realizes the modules as separate files and thus
enables the concurrent work of different users on a single
quality model. The modularization concept further enables
inheritance and overwriting concepts for model elements.
This way, a general module can define commonly known
metrics. A specific model for a programming language can
overwrite these metrics and attach concrete tools to them.

Furthermore, the editor contains a context-sensitive on-
line help. When selecting a model element in one of the
views, the help window shows the corresponding help text.
Through this help system, the description of the quality
meta model and a modeling guideline is integrated.

Quality Assessment. ConQAT is a toolkit for the creation
of quality dashboards that allows to model the analysis con-
figuration with a graphical domain-specific language (DSL).
It provides diverse quality analyses out of the box and in-
tegrates with state-of-the-art code analysis tools like Find-
bugs, PMD, FxCop or Gendarme. The results of the qual-
ity analyses are aggregated and visualized in configurable
HTML dashboards. The configuration DSL contains blocks
and processors, which are connected with edges to denote
the data flow. Processors are ConQAT’s atomic processing
units, which are each implemented in a Java class. Blocks

are composite units built from processors and blocks.
Within the Quamoco tool chain, ConQAT is used to per-

form the quality assessment based on the quality model.
The quality model editor allows to automatically generate a
ConQAT configuration that contains all the required analy-
ses and aggregations to assess the software system according
to the quality model. For each measure defined in the qual-
ity model, a corresponding block is generated. For instance,
if a quality model refers to a FindBugs rule, the FindBugs
block is added to the resulting analysis configuration.

For executing the analysis, settings specific for the an-
alyzed software system have to be provided in a run con-
figuration. Examples include the input directory, external
tool reports, and the location of findings discovered in man-
ual inspections. As as result, ConQAT produces a qual-
ity assessment report in HTML format that aggregates all
measurements and findings according to the quality model.
Since the actual quality assessment runs in batch mode, it
can be easily integrated in a continuous integration environ-
ment to constantly monitor the quality status of the software
system. That way, the impact of changes to the system on
quality characteristics can be detected early. The continu-
ous evaluation also allows for convenient fine-tuning of the
quality model, since the effect of adaptations can be directly
inspected in the assessment result. Trend charts allow in-
sights about the evolution of the quality status over time.

4. EXPERIENCE
The presented tooling is developed and used in the re-

search project Quamoco. The project partners (Technis-
che Universität München, SAP, Siemens, Capgemini, Fraun-
hofer IESE, itestra) translate their existing guidelines, rule
sets, inspection checklists, etc. to the quality meta model.
In a study [6], we analyzed the expressiveness of the meta
model and found that it covers the needs of all partners.

Up to now, each partner developed a quality model using
the editor, covering a subject area important to him. The
different models were then integrated into a single model, by
extracting generally accepted quality factors using the over-
writing mechanism. The resulting quality model consists
of 1073 model elements. The quality model editor proved
adequate for managing this large model.

Siemens created a model containing the rules of the static
code checker Gendarme for C#. Moreover, a small subset
of PCLint rules for C/C++ was incorporated. An existing
quality model developed by Technische Universität München
and MAN (a truck manufacturer)—containing static code
checker rules of FindBugs and PMD for Java—was also
introduced. SAP modeled the Web Content Accessibility
Guidelines (WCAG), which are not targeted at source code,
but at graphical user interfaces. Itestra provided a set of
guidelines containing manual inspection rules for software.

Using this quality model, several quality evaluations were
conducted with the tool chain. The evaluation of systems
developed with the programming languages C/C++, C#
and Java is possible. The evaluation of web pages by the
accessibility module was operationalized using the results of
manual inspections.

For a more thorough test of the quality model and its tool
chain, a structured case study was conducted [7]. The rank-
ing of five systems produced by our tool chain was compared
to a ranking based on manual quality evaluations published
in [9]. Statistical tests showed a significant correlation.

5. CONCLUSION
Over the last decades, multiple quality models and qual-

ity modeling approaches have been proposed. Moreover,
academia and industry provide a plethora of quality analysis
tools as well as quality dashboard tools that create an inte-
grated display of various quality data. However, we lack a
tight integration of quality models and quality analysis tools.
Such an integration is necessary to effectively and efficiently
compare the actual quality characteristics of a software sys-
tem (provided by the code analysis tools) with the specified
quality requirements (provided by the quality model). To
address this, we present the integrated tool chain developed
in the Quamoco project. The tool chain enables quality
engineers to create and maintain quality models with an ed-
itor. Such models explicitly describe the relation to the code
analysis tools that are used to analyze software systems and
the aggregation instructions used to condense the measure-
ment data. The actual assessment of software systems is
supported by the quality assessment toolkit ConQAT that
interfaces well-known analysis tools like FindBugs and Fx-
Cop. Based on the measurement data provided by these
tools and the specified aggregations in the quality model,
ConQAT generates a quality report that is directly related
to the quality model. Hence, the presented tool chain closes
the gap between quality models and analysis tools. For the
first time, it enables quality engineers to leverage the power
of existing quality analysis tools within the structured frame-
work of explicitly defined quality models.

6. REFERENCES
[1] B. W. Boehm. Characteristics of Software Quality.

North-Holland, 1978.

[2] F. Deissenboeck, E. Juergens, B. Hummel, S. Wagner,
M. y Parareda, and M. Pizka. Tool support for
continuous quality control. IEEE Software,
25(5):60–67, 2008.

[3] F. Deissenboeck, S. Wagner, M. Pizka, S. Teuchert,
and J.-F. Girard. An Activity-Based Quality Model
for Maintainability. In Proc. of the ICSM’07, 2007.

[4] R. G. Dromey. A model for software product quality.
IEEE Trans. Software Eng., 21(2):146–162, 1995.

[5] B. Kitchenham, S. G. Linkman, A. Pasquini, and
V. Nanni. The SQUID approach to defining a quality
model. Software Qual. J., 6(3):211–233, 1997.

[6] M. Kläs, C. Lampasona, S. Nunnenmacher,
S. Wagner, M. Herrmannsdörfer, and K. Lochmann.
How to Evaluate Meta-Models for Software Quality?
In Proc. of MetriKon’10. 2010.

[7] M. Kläs, K. Lochmann, and L. Heinemann. Evaluating
a Quality Model for Software Product Assessment – A
Case Study. In Proc. of SQMB’11 (to appear), 2011.

[8] C. Marinescu, R. Marinescu, R. F. Mihancea,
D. Ratiu, and R. Wettel. iPlasma: An Integrated
Platform for Quality Assessment of Object-Oriented
Design. In Proc. of the ICSM’05. 2005.

[9] R. Plösch. Software-Verkostung. 23.04.2010.
http://www.ipo.jku.at/dokumente/upload/

Software%20Verkostung%20Impulsvortrag.pdf.

[10] H. Schackmann, M. Jansen, and H. Lichter. Tool
Support for User-Defined Quality Assessment Models.
In Proc. of MetriKon’09. 2009.

