
The Quamoco Product Quality Modelling and Assessment Approach

Stefan Wagner∗, Klaus Lochmann†, Lars Heinemann†, Michael Kläs‡, Adam Trendowicz‡, Reinhold Plösch§,
Andreas Seidl¶, Andreas Goeb‖, and Jonathan Streit∗∗

∗Inst. of Software Technology, University of Stuttgart, Stuttgart, Germany, stefan.wagner@informatik.uni-stuttgart.de
†Institut für Informatik, Technische Universität München, Garching, Germany, lochmann,heineman@in.tum.de

‡Fraunhofer IESE, Kaiserslautern, Germany, michael.klaes,adam.trendowicz@iese.fraunhofer.de
§ Department of Business Informatics, Johannes Kepler University Linz, Linz, Austria, reinhold.ploesch@jku.at

¶ CSD Research, Capgemini, Munich, Germany, andreas.seidl@capgemini.com
‖ SAP Research, SAP AG, Darmstadt, Germany, andreas.goeb@sap.com

∗∗ itestra GmbH, Munich, Germany, streit@itestra.com

Abstract—Published software quality models either provide
abstract quality attributes or concrete quality assessments.
There are no models that seamlessly integrate both aspects.
In the project Quamoco, we built a comprehensive approach
with the aim to close this gap.

For this, we developed in several iterations a meta qual-
ity model specifying general concepts, a quality base model
covering the most important quality factors and a quality
assessment approach. The meta model introduces the new
concept of a product factor, which bridges the gap between
concrete measurements and abstract quality aspects. Product
factors have measures and instruments to operationalise quality
by measurements from manual inspection and tool analysis.
The base model uses the ISO 25010 quality attributes, which
we refine by 200 factors and 600 measures for Java and C#
systems.

We found in several empirical validations that the assessment
results fit to the expectations of experts for the corresponding
systems. The empirical analyses also showed that several of
the correlations are statistically significant and that the main-
tainability part of the base model has the highest correlation,
which fits to the fact that this part is the most comprehensive.
Although we still see room for extending and improving
the base model, it shows a high correspondence with expert
opinions and hence is able to form the basis for repeatable and
understandable quality assessments in practice.

Keywords-quality model; quality assessment; meta model;
empirical validation

I. INTRODUCTION

Despite great efforts in both research and practice, soft-
ware quality continues to be a controversial and insuffi-
ciently understood issue and the quality of software products
is often unsatisfactory. Economical impacts are enormous
and include not only spectacular failures of software but also
increased maintenance costs, resource consumption, long
test cycles and user waiting times.

A. Quality Models – Benefits and Shortcomings

Software quality models (QMs) tackle these issues by
providing a systematic approach for modelling quality re-
quirements, analysing and monitoring quality and directing

quality improvement measures [1]. They thus allow to ensure
quality early in the development process.

In practice, however, a gap remains between two different
types of QMs: Models of the first type, e.g. ISO 25010,
describe and structure general concepts that constitute high
quality software. Most of them, however, lack the ability
to be used for actual quality assessment or improvement.
The second kind of quality models is tailored for spe-
cific domains, certain architectural paradigms (e.g. SOA) or
single aspects of software quality (e.g. reusability). They
allow concrete assessments but often miss the connection
to higher level quality goals. Thus they make it difficult to
explain the importance of quality problems to developers or
sponsors and to quantify the economic potential of quality
improvements. Because these specific models usually do not
cover the full spectrum of software quality, they impede the
proliferation of a common understanding of software quality
in the software industry.

A similar gap also exists for quality assessment methods.
Effective quality management requires not only a definition
of quality and the measurement of individual properties but
also a method for assessing the overall quality of a software
product based on the measured properties. Existing quality
models either miss such assessment support completely or
provide procedures that are too abstract to be operational
(e.g. ISO 25040) or not based on a solid theoretical basis
(e.g. [2]). In consequence, quality assessment is inhibited
and likely to produce inconsistent and misleading results; in
particular if the required assessment expertise is missing.

B. Research Objective

Our aim is a quality model for software that is both widely
applicable and highly operationalised to provide the missing
connections between generic descriptions of software quality
attributes and specific software analysis approaches. The
required operationalisation implies the integration of existing
domain- and language-specific tools, manual analyses and a
soundly defined assessment method.

To achieve this goal, software quality experts from both
academia and industry in Germany joined forces within
the Quamoco research project. The project consortium con-
sists of Technische Universität München, SAP, Siemens,
Capgemini, Fraunhofer IESE and itestra. In total, these
partners spent 558 person months on the project.

C. Contribution

Our work provides four major contributions: First, we
developed a meta model for software quality, which covers
the full spectrum from structuring quality-related concepts
to defining operational means to assess their fulfilment in a
specific environment. Second, for the actual quality assess-
ment we contribute a clearly defined assessment method that
integrates with the meta model. Third, the base quality model
instantiates the meta model and captures knowledge on how
to conduct a basic quality assessment for different kinds of
software. At present, we have elaborated the base model in
depth for the languages Java and C#. Fourth, we performed
an initial validation of the model with real software systems,
which showed the correspondence of the assessment results
with expert opinions.

II. RELATED WORK

Quality models have been a research topic for several
decades and a large number of quality models has been
proposed [3]. The first work dates back to the late 1970s,
when Boehm et al. described quality characteristics and their
decomposition [4]. The 1980s saw the first need for custom
quality models and the first tool support. Until then, the
quality models simply decomposed the concept quality in
more tangible quality attributes. In the 1990s more elaborate
ways of decomposing quality attributes were introduced by
distinguishing between product components, which exhibit
quality carrying properties and externally visible quality
attributes [5]. Later, Kitchenham et al. [6] acknowledged
the need for an explicit meta model for quality models.

Based on the early quality models, the standard ISO 9126
was defined in 1991. As shown by various critiques (e.g. [7],
[8]) the used decomposition principles for quality attributes
are often ambiguous. Furthermore, the resulting quality
attributes are not specific enough to be directly measurable.
Although the recently published successor ISO 25010 has
several improvements, the overall critique is still valid. Our
survey [9], [10] shows that less than 28% of the companies
use these standard models and 71% of them have developed
their own QMs. Another weakness of these quality models is
that they do not specify how the quality attributes should be
measured and how measurement results can be aggregated
to achieve an overall quality assessment for a system.

Although not embedded in an operationalised quality
model, a large number of tools for quality analysis are avail-
able: bug pattern identification (e.g. FindBugs, Gendarme,
PC-Lint), coding convention checkers (e.g. Checkstyle),

clone detection tools and architecture dependency/cycle
analysis tools. These tools focus on specific aspects of
software quality and fail to provide comprehensive quality
assessments. Moreover, they are not explicitly and system-
atically linked to a quality model.

One can use the measurement data generated by these
tools as input for dashboard tools (e.g. QALab, Sonar
and XRadar). Their goal is to present an overview of the
quality data of a software system. Nevertheless, they also
lack an explicit connection between the metrics used and
the required quality attributes. This results in a missing
explanation of the impacts of found defects on software
quality and in missing rationales for the used metrics.

A comprehensive approach is taken by the research
project Squale [11]. They develop an explicit quality model
describing a hierarchical decomposition of the ISO 9126
quality attributes. The model contains formulas to aggregate
and normalise metric values. Regarding the quality model,
the main difference to our approach is that the model of
Quamoco uses a product model to structure the quality
factors. Based on the quality model, they provide tool
support for evaluating software products. The measures and
the quality model are fixed within these tools. In contrast,
Quamoco offers an editor to create and manage quality
models and the Quamoco tool chain allows for a flexible
configuration and integration of measurement tools and even
manually collected data.

In our prior work, we have investigated different ways of
describing quality and classifying metrics, e.g. activity-based
quality models [7] and technical issue classifications [12].
Based on this work, we developed a meta model for qual-
ity models and evaluated it regarding expressiveness [13].
Regarding quality assessments and tool support for it, we
experimented with different approaches [14]–[16]. Based on
the gained experience, we developed our tool-support [17].
This paper describes the complete approach and an empirical
validation.

III. QUALITY MODEL CONCEPTS

The first challenge to address the gap between abstract
quality attributes and concrete assessments is to formalise
general concepts for quality models by a suitable meta
quality model. After we describe how we use quality models,
we explain each of the concepts briefly and reference which
problems they solve. Finally, we combine the concepts into
a meta model to show the complete picture. These concepts
and the meta model have been developed in three iterations
over three years with corresponding evaluations [13].

A. Usage of the Quality Models

Most commonly, we find quality models reduced to just
reference taxonomies or implicitly implemented in tools.
As explicit and living artefacts, however, they can cap-
ture general knowledge about software quality, accumulate

knowledge from applying them in projects and allow to
define a common understanding of quality in a specific
context [7], [18]–[20].

We aim to use this knowledge as basis for quality con-
trol. In the control loop, the quality model is the central
element for identifying quality goals, assessing these goals,
analysing defects and reworking the software product based
on the analysis results. The quality model is useful to define
what we need to measure and how we can interpret it to
understand the state of quality of a specific product. A
single source of quality information avoids redundancies
and inconsistencies in diverse quality specifications and
guidelines.

On top of that, the model itself helps us to establish suit-
able and concrete quality requirements. The quality model
contains quality knowledge that we need to tailor for the
product to be developed. This includes removing unneeded
qualities as well as adding new or specific qualities.

B. General Concepts

The previous work of all Quamoco partners on quality
models, our joint discussions and experiences with earlier
versions of the meta model brought us back to the basic
concept of a factor. A factor expresses a property of an
entity, which is similar to what Dromey [5] called quality
carrying properties of product components. We describe
with entities the things that are important for quality and
with properties the attributes of the things we are interested
in. Because this concept of a factor is rather general, we can
use it on different levels of abstraction. We have concrete
factors such as the cohesion of classes as well as abstract
factors such as the portability of the product.

To clearly describe quality from an abstract level down to
concrete measurements, we explicitly distinguish between
the two factor types quality aspects and product factors.
Both can be refined to sub-aspects and sub-factors. The
quality aspects express abstract quality goals, for example,
the quality attributes of the ISO 9126 and ISO 25010, which
always have the complete product as their entity. The product
factors are measurable attributes of parts of the product. We
require that the leaf product factors are concrete enough,
so we can measure them. An example is the duplication
of source code, which we measure with clone coverage.
This clear separation helps us to bridge the gap between the
abstract notions of quality and concrete implementations.

Moreover, we are able to model several different hierar-
chies of quality aspects to express different views on quality.
Quality has so many different facets that a single quality
attribute hierarchy is not able to express it. Even in the recent
ISO 25010, there are two quality hierarchies: Product quality
and quality in use. We can model both as quality aspect
hierarchies. Also other types of quality aspects are possible.
We experimented with our own earlier work: activity-based
quality models [7] (similar to quality in use of ISO 25010)

and technical classifications [21]. We found that this gives
us the flexibility to build quality models tailored for different
stakeholders.

To completely close the gap between abstract quality at-
tributes and assessments, we need to set the two factor types
into relation. The product factors have impacts on quality
aspects. This is similar to variation factors, which have
impacts on quality factors in GQM abstraction sheets [22].
An impact is positive or negative and describes how the
degree of presence or absence of a product factor influences
a quality aspect. This gives us a complete chain from
measured product factors to impacted quality aspects and
vice versa.

We need product factors concrete enough to be measured
so that we can close the abstraction gap. Hence, we have
the concept of measures for product factors. A measure is
a concrete description how a specific product factor should
be quantified for a specific context. For example, this can
be counting the number of violations of the rule for Java
that strings should not be compared by “==”. A factor can
have more than one measure if we need separate measures
to cover the concept of the product factor. Moreover, we
separate the measures from their instruments. The instru-
ments describe a concrete implementation of a measure. For
the example of the string comparison, an instrument is the
corresponding rule as implemented in the static analysis tool
FindBugs. This gives us additional flexibility to collect data
for measures manually or with different tools in different
contexts. Overall, the concept of a measure also contributes
to closing the gap between abstract qualities and concrete
software as it is possible to trace down from the quality
aspects over product factors to measures and instruments.

With all these relationships with measures and instru-
ments, it is possible to assign evaluations to factors so that
we can aggregate from measurement results (provided by
instruments) to a complete quality assessment. There are
different possibilities to implement that. We will describe
a quality assessment method using these concepts later in
Section V. Moreover, we can go the other way round. We
can pick quality aspects, for example, ISO 25010 quality
attributes, which we consider important and costly for a
specific software system and trace down to what product
factors affect it and what are measures for that (cf. [15]).
This way, we can concentrate on the product factors with
the largest impact on these quality aspects. It gives us also
the basis for specifying quality requirements, for which
we developed an explicit quality requirements method [23],
[24].

Building quality models in such detail results in large
models with hundreds of model elements. Not all elements
are important in each context and it is impractical to build
a single quality model that contains all measures for all
relevant technologies. Therefore, we introduced a modular-
isation concept, which allows us to split the quality model

into modules. For that we have the root module, which
contains general quality aspect hierarchies as well as basic
product factors and measures. In additional modules, we
extend the root module for specific technologies, such as
object-orientation, programming languages, such as C#, and
domains, such as embedded systems.

The modules enable us to choose appropriate modules and
extend the quality model by additional modules for a given
context. To adapt the quality model for a specific company or
project, however, this is still too coarse grained. Hence, we
also developed an explicit adaptation method, which guides a
quality manager in choosing relevant quality aspects, product
factors and measures for the current project [25].

C. Meta Model

To precisely specify the general concepts described so
far, we modelled them in a meta model. The core elements
of the meta model are depicted as an (abstracted) UML
class diagram in Figure 1. Please note that we left out a
lot of details such as the IDs, names and descriptions of
each element to make it more comprehensible. At the centre
of the meta model resides the Factor with its specialisations
Quality Aspect and Product Factor. Both can be refined and,
hence, produce separate directed acyclic graphs. An Impact
can only go from a Product Factor to a Quality Aspect. This
represents our main relationship between factors and hence
allows us to specify the core quality concepts.

Entity
Product
Factor

Quality
Aspect

Impact

part-of re�nes

is-a Measure

Factor

re�nes

Evaluation

Instrument

uses

Figure 1. The meta quality model (excerpt)

The Factor always has an associated Entity, which can be
in a is-a as well as a part-of hierarchy. For example, in an
object-oriented language, a method is part of a class and is
a kind of source code. The property the Factor describes of
an Entity is expressed in the Factor’s name. Each factor has
also an associated Evaluation. It specifies how to evaluate or
assess the Factor. For that we can use the evaluation results
from sub-factors or – in the case of a Product Factor – the
values of associated Measures. A Measure can be associated
to more than one Product Factor and has potentially several
instruments that allow us to collect a value for the measure
in different contexts, e.g. with a manual inspection or a static
analysis tool.

We modelled this meta model with all details as an EMF1

1Eclipse Modeling Framework, http://emf.eclipse.org/

model, which then became the basis for the quality model
editor (see Section VI).

IV. BASE MODEL

Our main objective for the base model is to describe
software quality in a way that allows tool-supported quality
assessment and is applicable to a wide range of software
products. To reach this goal, software quality experts from
both academia and industry conducted a series of workshops
over three years to collaboratively transfer their knowledge
and experience into the structure described in section III. The
workshops covered the whole spectrum from full consortial
meetings to small, specialised teams creating and extending
single modules. The resulting QM represents our consoli-
dated view on the quality of software source code and is
generally applicable to any kind of software. By providing
in-depth modelling, including particular analysis tools as
instruments for the assessment of Java and C# systems, it
allows for comprehensive, tool-supported quality assessment
without requiring large adaptation or configuration effort.
Because this model constitutes the basis for further special-
isation and adaptation, we call it the base model.

A. Contents

The Quamoco base model is a comprehensive selection
of factors and measures relevant for software quality assess-
ment. In total, it comprises 112 entities and 286 factors.
Since some factors are used for structuring purposes rather
than quality assessment, only 221 factors have evaluations
assigned. Of these, 202 factors define impacts on other
factors, leading to a total of 492 impacts. Since the model
provides operationalisation for different programming lan-
guages (cf. Section IV-B), it contains considerably more
measures than factors: In total, there are 194 measured
factors and 526 measures in the model. For these measures,
the model contains 542 instruments, which split up into 8
manual ones and 536 that are provided by one of 12 different
tools. The tools most relied on are FindBugs (Java, 361
rules modelled) and Gendarme (C#, 146 rules). Other tools
integrated into our model include PMD (Java, 4 rules) and
several clone detection, size, and comment analyses that are
part of the quality assessment framework.

In the following, we present example factors including
their respective measures and impacts to illustrate the struc-
ture of the base model.

1) Rules of Static Code Analysis Tools: As de-
scribed above, the largest fraction of measures refers to
static code analysis tools. One example is the FindBugs
rule FE TEST IF EQUAL TO NOT A NUMBER, which
scans Java code for equality checks of floating point values
with the Double.NaN constant. The Java language semantics
defines that nothing ever equals to NaN, not even NaN
itself, so that (x == Double.NaN) is always false. To check
whether a value is not a number, the programmer has to

call Double.isNaN(x). This rule is an instrument to the
Doomed test for equality to NaN measure, which measures
the factor General Expression Applicability for comparison
expressions, along with a couple of other measures. This
factor in turn influences both Functional Correctness and
Analysability.

2) Established Generic Factors: Rule-based code anal-
ysis tools cannot detect every kind of quality problems.
Therefore, the base model also contains product factors
based on established research results, metrics and best-
practices. Identifiers have been found to be essential for
the understandability of source code. Whether identifiers are
used in a concise and consistent manner can only partly be
assessed automatically [26]. Therefore, the factor Confor-
mity to Naming Convention for source code identifiers con-
tains both automatic checks performed by several tools and
manual instruments to assess whether identifiers are used
in a consistent and meaningful way. Another established
factor related to software quality is code cloning. Source
code that contains large amounts of clones was shown to be
hard to understand and maintain [27]. The concept of code
cloning is represented in the factor Duplication of Source
Code, which has negative impacts on both analysability and
modifiability. It is measured by clone coverage as well as
cloning overhead.

B. Modularisation

According to the modularisation concept introduced in
Section III, the base model is structured into several mod-
ules. In the base model, a module root contains the defi-
nitions of quality aspects. For each programming language
in the quality model an own module was introduced. For
object-oriented programming languages (Java, C#) an inter-
mediate module object-oriented defines usual concepts of
object-oriented programming languages such as classes or
inheritance.

We used the modularisation concept to integrate individual
analysis tools for the programming languages. In the module
object-oriented, we defined a large number of general met-
rics without connections to concrete tools (e.g. number of
classes). The module for Java defines a tool for measuring
the number of classes in Java systems. This way, we support
a separation between general known concepts and specific
instruments.

The explicit definition of modules provides several bene-
fits to us: First, it enables us to separately and independently
work on modules for different technologies and domains.
Second, it allows us to explicitly model the commonalities
and differences between several programming languages.
This is visible in the reuse of factors of the module object-
oriented in the modules Java and C#: The common module
defines 64 factors, Java adds only 1 and C# only 8 language-
specific factors.

We also used the modularisation concept to connect
domain-specific quality models with the root model. The
industry partners defined their own models for their domain.
For example, itestra defined a model for information sys-
tems. It extends the root model and adds factors describing
quality characteristics of database schemas and tables.

V. QUALITY ASSESSMENT APPROACH

A QM specifies quality in terms of relevant properties of
software artefacts and associated measures. Yet, to support
assessing product quality the QM needs to be associated with
an approach to synthesise and interpret the measurement data
collected for the product. In this section, we specify a quality
assessment method applicable for Quamoco QMs.

A. Practical Challenges

In practice, there are a number of specific challenges
that quality assessment must address in addition to the
challenges of quality modelling. To identify these challenges
and to determine how existing quality assessment methods
address them, we performed a systematic literature review
and a survey among members of the Quamoco consortium.
Details on the design, execution and results of that survey
are beyond the scope of this paper and will be published
separately.

Among the most important requirements were that a
software quality assessment should be comprehensible to
software decision makers, combines quality preferences of
different groups of stakeholders, copes with incomplete
information and allows for mutual compensation between
multiple (potentially contradictory) quality aspects. We ob-
served that the structure of the quality assessment problem
corresponds to the problems addressed by Multicriterial
Decision Analysis (MCDA) [28]. As a result of a literature
review we decided to adapt principles of Multiple-Attribute
Utility/Value Theory (MAUT/MAVT) [28], as it meets most
of the requirements and can be easily adjusted to meet all
the requirements.

B. Quality Assessment Method

The Quamoco quality assessment method models the pref-
erences of decision makers for a product’s quality using the
concept of utility. Utility quantifies the relative satisfaction
of a decision maker concerning the quality of a software
product characterised by specific measurable factors.

While measures provide objective values without prefer-
ences, the utility defines the quality preferences of a decision
maker in that for any two products the one with higher
utility is preferred. For example, for the purpose of assessing
software maintainability we may consider the factor density
of comments in the software source code, measured as the
percentage of comment lines in the complete source code.
The utility of this factor would not be monotonic. From the
perspective of maintaining software code, we would prefer

more code comments only up to a certain threshold (utility
increases with increasing comment density) and drop after
exceeding this threshold (utility decreases with increasing
comment density). For each measurable factor, we can define
a different mapping between the factor measurements and
corresponding utilities using a utility function. In case of
multiple factors, the total product utility is a synthesis of
the utilities of all individual factors. Within the hierarchical
structure of the base model, the utility function defines a
mapping between the factor’s measurement values and its
utility. At higher levels of the QM hierarchy, the utility of
a factor results from a synthesis of the utilities assigned to
all its direct sub-factors.

Figure 2 shows the quality assessment activities within
the hierarchical structure of the base model. On the left side
of the figure, there are key activities and outputs needed for
operationalising the model to perform assessments. These
activities and their outputs correspond to the generic process
of MCDA (e.g. [29]). Analogically, on the right side of
the figure, there are the corresponding activities performed
during the assessment of a specific product and their outputs.
Subsequently, we discuss the objective and concrete proce-
dure applied for each activity couple when we operationalise
and apply the base model for quality assessments.

Quality Q

Factor F1 Factor F2

Factor F1.1

w1 w2

w1.2

Operationalization Quality Model Application

Defining
weights,

aggregation
operator, and
interpretation

models

Defining
weights, utility
functions, and
interpretation

models

Defining
measures
(base and

derived) and
weights

Factor F1.2

Weights,
utilities, and
assessments

Weights, utility
functions, and
assessments

Measures and
weights

U(Q)=
i = 1

2
U(Fi) wi

Software Product

w1.1

wM5wM4

Measure M5Measure M4

Measure M3Measure M2Measure M1

...

Figure 2. Overview of the quality assessment approach

1) Defining Measures / Measurement: During the oper-
ationalisation, we have to associate measures for all input
data needed for the quality assessment with appropriate
measurement instruments. Each measure was reviewed by
two measurement experts to decide on an appropriate nor-
malisation measure based on a defined set of rules. For
instance, base measure M1: Doomed test for equality to
NaN is normalised by base measure M2: Lines of code into
derived measure M4, through which measurements of M1

become comparable between software systems of different

sizes. The measures quantify the lowest-level factors in
the QM hierarchy. During the application, objective mea-
surement data are collected. For example, for the source
code of the Java Platform, version 6, we obtain M1 = 6,
M2 = 2, 759, 369, and consequently M4 = 2.17 · 10−6.
To cope with incomplete measurement data, the approach
uses interval arithmetic to determine the range of possible
outcomes for factors.

2) Defining Utility Functions / Scoring: During the oper-
ationalisation, we defined a utility function for each measure
of a factor at the lowest level of the hierarchical QM. These
functions define the utility each measure has in the context
of the factor it is associated to. The factor’s utility is then
defined as the weighted sum of the utilities of all measures
connected to the factor. To assure the understandability of
the evaluation, we used only simple linear increasing and
decreasing functions with two thresholds min and max that
determine when the factor is associated with the minimal
(0) and maximal utility (1). After experts decided on the
type of function (decreasing or increasing), we determine
the thresholds for the function using Equation 1 on the
normalised measurement values for a set of at least 10
baseline systems. For the Java specific-part, we used, for
instance, data from a sample of 110 open source software
systems.

IF |{si=1...n : si > 0}| < 5 THEN
min = 0,max = 0.00000001

ELSE

max = max

({
si : si ≤

Q3({si : si 6= 0})
+1.5 · IQR({si})

})
,

min = min

({
si : si ≥

Q1({si : si 6= 0})
−1.5 · IQR({si})

})
END

(1)
where si = S(Fx) for baseline system i and where Q1

and Q3 represent the 25% and 75% percentiles. IQR =
Q3−Q1 represents the inter quartile range.

The equation assures that for measures with a limited
number of data points different from zero a simple jump
function at 0 is defined. Else, the minimum and maximum
non-outlier values are used as thresholds. For example, we
obtained for M4: min = 0, max = 8.5 · 10−6. Two
measurement experts reviewed the automatically determined
thresholds for each measure together with supporting de-
scriptive statistics for plausibility. During the application, we
calculated the defined evaluation function on the measure-
ment data of the assessed system. This operation involves
evaluating the utility of a factor at the lowest level of
the QM. For the Java Platform, version 6, we obtain, for
instance, U(M4) = Eval(M4) = 0.74

3) Defining Factor Weights & Aggregation Operator / Ag-
gregation: During operationalisation, the relative importance
of adjacent elements of the QM has to be specified, where

elements include factors and measures directly associated
to lowest-level factors. We extracted the relative importance
of quality aspects from the results of our survey [10]. For
other relationships, mixed teams consisting of industrial
and academic experts determined the relative importance.
Weights for adjacent elements must be between 0 and 1 and
sum up to 1. To support the efficient definition of weights,
we used the Rank-Order Centroid method [30] to calculate
the weights of each factor automatically based on a relevance
ranking between sibling factors provided by the teams using
the Swing approach [31].

In our case, M4 was rated as less important for F1.1 (Gen-
eral expression applicability of comparison expressions) than
the second measure M5: Floating point equality and, there-
fore, obtained the weight wM4

= 0.25. During the model
application, we use the weights within the bottom-up syn-
thesis of factor utilities along the hierarchy of the QM. For
this purpose, we define an appropriate aggregation operator.
We use a weighted sum operator as an easily understandable
and relatively reliable aggregation approach. For instance,
we obtain for U(F1.1) = wM4

· U(M4) + wM5
· U(M5) =

0.25 · 0.74 + 0.75 · 0.89 = 0.85 and for F1 (functional
correctness) U(F1) = w1.1 · U(F1.1) + w1.2 · U(F1.2) =
0.02 · 0.85 + ... = 0.82.

4) Defining / Applying Interpretation Models: These ac-
tivities support the decision maker in interpreting the factor’s
utility, for example if it is good or bad. The objective of
interpretation is to map the ratio-scale utility, for instance,
onto a more intuitive, ordinal scale such as school grades or
traffic lights.

VI. TOOL SUPPORT

The base model was designed in a way that it can be
used as provided without any modifications for any software
project, regardless of the application domain. Thus, the
model as well as the assessment method is ready to use
and can be applied with minimal effort on a project.

Additionally, the Quamoco project contributes an inte-
grated tool chain for both quality modelling and assessment
[17], available from the Quamoco website2. The tooling con-
sists of the quality model editor and the quality assessment
engine which we describe in the following.

A. Quality Model Editor

The quality model editor is built on the Eclipse Platform
and the Eclipse Modeling Framework. It allows modellers to
edit QMs conforming to the Quamoco meta quality model.
According to the modularisation concept (cf. Section IV-B),
each module of a QM is stored in a separate file. This
enables concurrent work on a QM by multiple users. The
content of the model can be navigated by different tree views
that allow form-based editing of the attributes of model
elements.

2https://quamoco.in.tum.de/wordpress/?page id=767&lang=en

Validation during editing helps the modeller to create
models adhering to meta model constraints, consistency
rules and modelling best practices. A simple validation rule
checks for unreferenced model elements. A more sophis-
ticated rule ensures that for model elements referenced in
other quality modules an appropriate requires dependency
between the modules is defined. The editor employs the
Eclipse marker mechanism for displaying error and warning
messages in a list and provides navigation to affected ele-
ments. The user is further assisted by an online help feature
that displays context-sensitive help content depending on the
current selection in the editor. The help texts explain the
concepts of the meta quality model and contain a guideline
with best practices for quality modelling.

B. Quality Assessment Engine

The quality assessment engine is built on top of the quality
assessment toolkit ConQAT3 which allows to create quality
dashboards integrating diverse quality metrics and state-of-
the-art static code analysis tools.

The connection between the quality modelling and the
assessment is achieved by an automated generation of
a ConQAT analysis configuration from a QM. For the
assessment of a software system, the quality assessment
engine is provided with the QM, the code of the software
system to assess, the generated ConQAT configuration and,
optionally, manual assessment results stored in an Excel file.
This allows the assessor to extend the tooling with custom
analyses needed for the evaluation of an own QM.

The assessment result can be inspected within the editor
in the hierarchy of the QM. Moreover, a treemap visual-
isation of the results allows to track down quality issues
from abstract quality characteristics to concrete measures.
Finally, an HTML report allows to inspect the results of
an assessment from within a browser, thus not requiring
the tooling and the QM. The quality assessment engine can
also run in batch mode, which enables the integration in
a continuous integration environment. Thereby, a decay in
quality can be detected early.

VII. EMPIRICAL VALIDATION

We validate the quality assessments grounded on the base
model using two research questions:
RQ 1: Can the base model be used to detect quality
differences between different systems or subsystems?
RQ 2: Can the base model be used to detect quality
improvements over time in a software system?

A. Comparison of Software Products and Subsystems

To answer RQ 1, we have to evaluate whether the base
model provides valid assessment results, meaning that the as-
sessment results are in concordance with the results obtained
by another independent and valid approach for assessing

3http://www.conqat.org/

product quality. We check RQ 1 for (a) products and (b)
subsystems, because in practice these are the two most
important applications for quality assessments: compare
products with respect to quality and identify parts of a
system that need further quality improvement.

Design: To evaluate the validity of the quality as-
sessments, we need an independently obtained criterion for
product quality that we can compare with our assessment
results. Since no measurement data were available that
directly measure the quality or the quality aspects of interest
for a set of products or subsystems that we can assess using
the base model, we utilised as the independent criterion
expert-based quality judgments. (a) For the comparison of
different software products, we used the rating provided in
the Linzer Software-Verkostung [32] for a set of five open
source products. The rating provided is a ranking of the
five systems based on a combination of ratings provided
independently by nine experienced Java experts. (b) For the
comparison of different subsystems of one product, we used
five subsystems of a business software system developed
by one of the industry partners and a ranking provided by
an expert from the company familiar with the five assessed
subsystems.

To measure validity and ensure comparability with other
studies, we make use of the validity criteria proposed in the
IEEE standard 1061 for validating software quality metrics.
The standard proposes a set of criteria but most of them
assume that the collected measures and the independent
criterion both use an interval or ratio scale. In our case,
the results of the base model assessments are provided as
a value characterising the product quality between 1 (best
possible) and 6 (worst possible) and the assessment results
of the expert judgements provided on an ordinal scale as
a ranking from best (1) to worst (5) product or subsystem,
respectively. Consequently, we had to limit our investigation
to the validity criterion consistency (cf. IEEE 1061), which
can be applied on ordinal scale data. It characterises in our
case the concordance between a product ranking based on
the assessments provided by our model and the ranking
provided independently by (a) a group of experts / (b) an
expert. This means that we determine whether the base
model can accurately rank the set of assessed products /
subsystems with respect to their quality (as perceived by
experts).

Following the suggestion of IEEE 1061, we measure
consistency by computing the Spearman’s rank correlation
coefficient (r) between both rankings, where a high positive
correlation means high consistency between the two rank-
ings. Since we want to check whether a potentially observed
positive correlation is just due to chance or is a result of
using an appropriate quality model, we state the hypotheses
H1A and H2A (and corresponding null hypotheses H10 and
H20). We test both with the confidence level 0.95 (α = 0.05):
H1A : There is a positive correlation between the ranking

of the systems provided by the base model (BM) and the
ranking of the systems provided by the experts during the
Linzer Software-Verkostung (LSV).
H2A : There is a positive correlation between the ranking

of the subsystems provided by the base model (BM) and the
ranking of the subsystems provided by the company expert
(Exp).

H1A : r(rankingBM, rankingLSV) > 0

i.e., H10 : r(rankingBM, rankingLSV) ≤ 0

H2A : r(rankingBM, rankingExp) > 0

i.e., H20 : r(rankingBM, rankingExp) ≤ 0

Execution: (a) During the study, we used the base
model to assess the quality of five open source products
for which independent expert-based assessment results of
the Linzer Software-Verkostung were available: JabRef, TV-
Browser, RSSOwl, Log4j and Checkstyle. We ordered the
assessed products by the results for their overall quality
provided by the base model and compared them with the
ranking provided by the Linzer Software-Verkostung. (b)
Moreover, we employed the base model to assess the overall
quality and maintainability of the five selected subsystems
of a business software developed by one of the industry
partners. Based on these values, we ranked the subsystems
with respect to maintainability and the overall quality. In-
dependent of this, we interviewed an expert in the com-
pany and asked him to rank the subsystems with respect
to maintainability and overall quality. When he could not
decide on the order of two subsystems, he provided the same
rank for the two subsystems. In both studies, we followed a
cross-validation approach (i.e., none of the assessed systems
/ subsystems were part of the set of systems used to calibrate
the base model).

Results: Table I shows the assessment results using the
base model and the resulting product ranking as well as the
ranking of the Linzer Software-Verkostung. The calculated
Spearman’s rho correlation is r = 0.975, which is close to
a perfect correlation of 1. Hypothesis H1A can also be ac-
cepted on a high level of significance (p=0.002) meaning that
there is a significant positive correlation between the ranking
provided by the base model and the ranking provided by the
Linzer Software-Verkostung.

Table I
COMPARISON OF THE ASSESSMENT RESULTS AND THE RESULTS OF

“LINZER SOFTWARE-VERKOSTUNG”

Product LOC Result BM Rank BM Rank LSV
Checkstyle 57,213 1 (1.87) 1 1
RSSOwl 82,258 3 (3.14) 2 3
Log4j 30,676 3 (3.36) 2 2
TV-Browser 125,874 4 (4.02) 4 4
JabRef 96,749 5 (5.47) 5 5

The assessment results for the subsystems are shown in
Table II. The calculated Spearman’s rho correlation for the
overall quality is r = 0.32, which is a positive but only
moderate correlation. Hypothesis H2A cannot be accepted
(p=0.30) meaning that we cannot show the statistical signif-
icance of the observed positive correlation. The agreement
between the expert and the base model results is higher
(r = 0.67) when considering maintainability, but also not
statistical significant (p=0.11).

Table II
COMPARISON OF THE ASSESSMENT RESULTS OF FIVE SUBSYSTEMS AND

AN EXPERT’S OPINION

Rank Exp Rank Exp Rank BM Rank BM
Subsystem Quality Maint. Quality Maint.
Subsystem A 2 2 5 2
Subsystem B 2 3 3 5
Subsystem C 4 4 2 3
Subsystem D 1 1 1 1
Subsystem E 4 3 4 4

Interpretation: (a) The assessments of the overall prod-
uct quality for the five investigated systems turn out to be
consistent and thus valid when compared to an independent
criterion for quality, in this case provided in the form
of an expert-based assessment. Although this conclusion
is supported by a very high and statistically significant
correlation, there are some threats to validity that need to
be considered.

(b) For the investigated subsystems, the results are not that
clear. The study hints that the Quamoco base model is useful
to identify – or at least narrow down – the list of subsystems
that need further quality improvement. However, since the
correlation is only moderate, a larger sample of subsystems
would be needed to draw statistical significant conclusions.

Threats to Validity: The most relevant threats we see
are (1) we cannot guarantee that the criterion chosen for
the validation, namely the expert-based quality rating, ad-
equately represents the quality of the products/subsystems,
this is especially relevant for the rating of the subsystems
where only one expert rating was available. (2) The gener-
alizability of our results is limited by the fact that the scope
of the empirical validation is limited to five medium sized
Open Source systems and five subsystems of one industrial
software system written in Java.

B. Making Quality Improvements Visible

In a second study we knew from the quality experts
of the project that they had invested effort in enhancing
the maintainability of the system. In this study from the
automation domain (steel production) we analysed six ver-
sions of a Java software using our base model. The major
goal was to validate, whether our base model would reflect
the assumed quality improvements claimed by the quality
managers (RQ 2). It is important to understand that the

quality improvement actions were not based on any results
of static code analysis tools but on the experience of the
developers involved. Thus, as a side effect the validation
should also show to some extent whether our base model
reflects the common understanding of quality (in the context
of maintenance) of experienced developers.

Results: Table III shows the assessment results using
the base model and the corresponding calculated quality
grades. The quality experts stated that they explicitly im-
proved the quality starting right after rollout of version 2.0.1.
There is no quality related information available for versions
1.9.0 and 2.0.0.

Table III
QUALITY IMPROVEMENTS IN AN AUTOMATION SOFTWARE PROJECT

Version Quality grade
1.9.0 4.15
2.0.0 3.34
2.0.1 3.63
2.0.2 3.42
2.1.0 3.27
2.2.1 3.17

Interpretation: The results clearly show steady im-
provements (as expected) for the versions 2.0.2., 2.1.0 and
2.2.1. Our assessment model calculates a considerable im-
provement of 12.68% from version 2.0.1 to version 2.2.1.
This result reflects the expectations of the quality experts of
the project.

Threats to Validity: The most relevant threat we see
is that we had only one industry project at hand where the
quality experts explicitly invested in quality without using
static code analysis tools. The generalizability of this result
is therefore limited.

VIII. CONCLUSIONS

In practice, a gap exists between abstract quality defi-
nitions provided in common quality taxonomies, such as
ISO 25010, and concrete quality assessment techniques and
measurements [9]. Our overall aim is to close this gap by
operationalised quality models. We have shown in this paper
our four contributions to achieve this goal: (1) We developed
an explicit meta model, which allows us to specify opera-
tionalised quality models by the flexible but well-defined
concepts of factors, impacts between factors and measures
for assessing the factors. (2) Using this meta model, we
built a broad, largely technology independent base model
that we exemplarily operationalised for the programming
languages Java and C#. The freely available and extendable
base model captures the most important product factors and
their impacts to product quality as defined in ISO 25010. (3)
We provided a quality assessment approach, which enables
us to use the base model for transparent and repeatable
quality assessments. (4) We evaluated two aspects of the
complete approach in empirical studies. We found that the

assessment results fit to expert opinion but the strongest
results are limited to the maintainability part of the model.
In addition, we have developed extensive, open-source tool
support for building operationalised quality models as well
as performing the quality assessments.

By working on filling the gap in current quality mod-
els, we found several more directions of future work that
should be followed. First, the base model and its evaluation
concentrate on a small number of technologies so far. To
be truly broad, we need to take further technologies and
contents for the base model into account. Second, we are
working on further empirical studies to understand the still
existing weaknesses of our approach to further improve
them. In particular, we work with all industry partners on
drill-downs where system experts rate the usefulness of the
quality assessment results.

ACKNOWLEDGMENT

We are grateful to all present and former members of the
Quamoco project team as well as all the participants of our
interviews and surveys. This work has been supported by the
German Federal Ministry of Education and Research under
grant number 01IS08023.

REFERENCES

[1] F. Deissenboeck, E. Juergens, K. Lochmann, and S. Wagner,
“Software quality models: Purposes, usage scenarios and
requirements,” in WoSQ’09, 2009.

[2] J. Bansiya and C. Davis, “A hierarchical model for object-
oriented design quality assessment,” IEEE Transactions on
Software Engineering, vol. 28, no. 1, pp. 4 –17, 2002.

[3] M. Kläs, J. Heidrich, J. Münch, and A. Trendowicz, “CQML
scheme: A classification scheme for comprehensive quality
model landscapes,” in SEAA’09, 2009.

[4] B. W. Boehm, J. R. Brown, H. Kaspar, M. Lipow, G. J.
Macleod, and M. J. Merrit, Characteristics of Software Qual-
ity. North-Holland, 1978.

[5] R. G. Dromey, “A model for software product quality,” IEEE
Transactions on Software Engineering, vol. 21, no. 2, pp.
146–162, 1995.

[6] B. Kitchenham, S. G. Linkman, A. Pasquini, and V. Nanni,
“The SQUID approach to defining a quality model,” Software
Quality Journal, vol. 6, no. 3, pp. 211–233, 1997.

[7] F. Deissenboeck, S. Wagner, M. Pizka, S. Teuchert, and J.-F.
Girard, “An activity-based quality model for maintainability,”
in ICSM ’07, 2007.

[8] H. Al-Kilidar, K. Cox, and B. Kitchenham, “The use and use-
fulness of the ISO/IEC 9126 quality standard,” in ISESE’05,
2005.

[9] S. Wagner, K. Lochmann, S. Winter, A. Goeb, and M. Klaes,
“Quality models in practice: A preliminary analysis,” in
ESEM’09, 2009.

[10] S. Wagner, K. Lochmann, S. Winter, A. Goeb,
M. Kläs, and S. Nunnenmacher. (2010) Software
quality in practice - survey results. [Online].
Available: https://quamoco.in.tum.de/wordpress/wp-content/
uploads/2010/01/Software Quality Models in Practice.pdf

[11] K. Mordal-Manet, F. Balmas, S. Denier, S. Ducasse, H. Wertz,
J. Laval, F. Bellingard, and P. Vaillergues, “The squale
model,” in ICSM’09, 2009.

[12] R. Plösch, A. Mayr, G. Pomberger, and M. Saft, “An approach
for a method and a tool supporting the evaluation of the
quality of static code analysis tools,” in SQMB ’09, 2009.

[13] M. Kläs, C. Lampasona, S. Nunnenmacher, S. Wagner,
M. Herrmannsdörfer, and K. Lochmann, “How to evaluate
meta-models for software quality?” in MetriKon’10, 2010.

[14] R. Plösch, H. Gruber, A. Hentschel, C. Körner, G. Pomberger,
S. Schiffer, M. Saft, and S. Storck, “The emisq method and
its tool support-expert-based evaluation of internal software
quality,” Innovations in Systems and Software Engineering,
vol. 4, no. 1, pp. 3–15, 2008.

[15] S. Wagner, “A Bayesian network approach to assess and
predict software quality using activity-based quality models,”
Information and Software Technology, vol. 52, no. 11, pp.
1230–1241, 2010.

[16] K. Lochmann and L. Heinemann, “Integrating quality models
and static analysis for comprehensive quality assessment,” in
WETSoM’11, 2011.

[17] F. Deissenboeck, L. Heinemann, M. Herrmannsdoerfer,
K. Lochmann, and S. Wagner, “The Quamoco tool chain for
quality modeling and assessment,” in ICSE’11, 2011.

[18] R. Marinescu and D. Ratiu, “Quantifying the quality
of object-oriented design: The factor-strategy model,” in
WCRE’04, 2004.

[19] I. Heitlager, T. Kuipers, and J. Visser, “A practical model for
measuring maintainability,” in QUATIC’07, 2007.

[20] M. Luckey, A. Baumann, D. Méndez Fernández, and S. Wag-
ner, “Reusing security requirements using an exted quality
model,” in SESS ’10, 2010.

[21] R. Plösch, H. Gruber, C. Körner, G. Pomberger, and S. Schif-
fer, “A proposal for a quality model based on a technical topic
classification,” in SQMB’09, 2009.

[22] R. van Solingen and E. Berghout, Goal/Question/Metric
Method. McGraw-Hill Professional, 1999.

[23] R. Plösch, A. Mayr, and C. Körner, “Collecting Quality Re-
quirements Using Quality Models and Goals,” in QUATIC’10,
2010.

[24] K. Lochmann, “Engineering quality requirements using qual-
ity models,” in ICECCS’10, 2010.

[25] M. Kläs, C. Lampasona, and J. Münch, “Adapting software
quality models: Practical challenges, approach, and first em-
pirical results,” in SEAA’11, 2011.

[26] F. Deissenboeck and M. Pizka, “Concise and consistent
naming,” Software Quality Journal, vol. 14, no. 3, pp. 261–
282, 2006.

[27] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner,
“Do code clones matter?” in ICSE’09, 2009.

[28] R. Keeney and H. Raiffa, Decisions with Multiple Objectives:
Preferences and Value Trade-Offs. Cambridge University
Press, 1993.

[29] J. Dodgson, M. Spackman, A. Pearman, and L. Phillips,
“Multi-criteria analysis: A manual,” Department of the En-
vironment, Transport and the Regions, London, Tech. Rep.,
2000.

[30] F. H. Barron and B. E. Barrett, “Decision quality using ranked
attribute weights,” Management Science, vol. 42, no. 11, pp.
1515–1523, 1996.

[31] W. Edwards and F. H. Barron, “SMARTS and SMARTER:
Improved simple methods for multiattribute utility measure-
ment,” Organizational Behavior and Human Decision Pro-
cesses, vol. 60, no. 3, pp. 306–325, 1994.

[32] H. Gruber, R. Plösch, and M. Saft, “On the validity of bench-
marking for evaluating code quality,” in IWSM/MENSURA’10,
2010.

