
Are Comprehensive Quality Models Necessary
for Evaluating Software Quality?

Klaus Lochmann
Technische Universität München
Software & Systems Engineering

Munich, Germany
lochmann@in.tum.de

Jasmin Ramadani, Stefan Wagner
University of Stuttgart

Institute of Software Technology
Stuttgart, Germany
jasmin.ramadani,

stefan.wagner@informatik.uni-
stuttgart.de

ABSTRACT
The concept of software quality is very complex and has
many facets. Reflecting all these facets and at the same
time measuring everything related to these facets results in
comprehensive but large quality models and extensive mea-
surements. In contrast, there are also many smaller, focused
quality models claiming to evaluate quality with few mea-
sures.

We investigate if and to what extent it is possible to build
a focused quality model with similar evaluation results as
a comprehensive quality model but with far less measures
needed to be collected and, hence, reduced effort. We make
quality evaluations with the comprehensive Quamoco base
quality model and build focused quality models based on
the same set of measures and data from over 2,000 open
source systems. We analyse the ability of the focused model
to predict the results of the Quamoco model by comparing
them with a random predictor as a baseline. We calculate
the standardised accuracy measure SA and effect sizes.

We found that for the Quamoco model and its 378 auto-
matically collected measures, we can build a focused model
with only 10 measures but an accuracy of 61 % and a
medium to high effect size. We conclude that we can build
focused quality models to get an impression of a system’s
quality similar to comprehensive models. However, when
including manually collected measures, the accuracy of the
models stayed below 50 %. Hence, manual measures seem
to have a high impact and should therefore not be ignored
in a focused model.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—Software
Quality Assurance (SQA)

c©ACM. This is the author’s version of the work. It is posted
here for your personal use. Not for redistribution. The defini-
tive Version of Record was published in Proceedings of the 9th In-
ternational Conference on Predictive Models in Software Engineering,
https://doi.org/10.1145/2499393.2499404.

General Terms
Experimentation

Keywords
Software quality, quality model, quality evaluation

1. INTRODUCTION
Software quality is a core concept of software engineering

as we aim to build software systems in time, on budget, with
suitable functionality and high quality. Almost any activity
and method in software engineering influences the quality of
software. To describe, evaluate and predict quality, we use
quality models. They help us to understand what we need
to pay attention to when building the system and also what
to measure when we want to know the quality level of the
system.

The fact that software quality is very complex and has
many facets suggests that we also need comprehensive qual-
ity models to cover all these facets. Recent initiatives such
as CISQ [26], Squale [20] and Quamoco [28] propose to some
degree similar solutions in the form of large, operationalised
quality models to support detailed measurement as well as
the breadth of software quality. As a result, the quality
models demand to collect a lot of data for various measures,
some of them manually, with high effort or expensive tools.
This, in turn, leads to comprehensive but also very large
quality models. For example, the Quamoco base model con-
tains 194 factors with an influence on quality measured by
526 measures for different programming languages.

1.1 Problem Statement
This comprehensiveness and level of detail of the com-

prehensive quality models have several advantages: They
can help developers and quality engineers to better under-
stand the meaning of measures and the relations between
different factors with an impact on quality. Furthermore,
they support the specification of detailed, testable quality
requirements. Also for a comprehensible and precise quality
evaluation, it is helpful to have all these details.

In contrast, there are many focused quality models, usu-
ally based on a small set of measures and regression or
machine learning, to evaluate one or many quality aspects.
They can be useful in practical settings where we prefer a
less comprehensive and precise evaluation but at lower cost

ar
X

iv
:1

70
3.

04
29

8v
1

 [
cs

.S
E

]
 1

3
M

ar
 2

01
7

or effort. The various measures in the comprehensive mod-
els can come from diverse tools at differing costs and also
for manual inspections with high effort. In software quality,
however, a small, single defect can have a huge impact. Not
including detectors for such defects can hence be a risk for
the validity of the quality evaluation. So far, it is not clear
what effects this trade-off between comprehensiveness and
low application effort has. Even between the focused qual-
ity models, there are significant differences in the evaluation
results [16].

1.2 Research Objective
Our overall aim is to make the application of quality mod-

els and their integration into the development process as
simple and effortless as possible. To give immediate feedback
to developers when quality problems have been introduced,
we propose continuous quality control [8]. That ideally in-
cludes a continuous quality evaluation as well. Hence, our
goal is to make the evaluation using a quality model fast
and with low effort. In this paper, we concentrate on inves-
tigating the trade-off in using large, comprehensive quality
models or focused quality models that use a limited set of
measures for quality evaluation.

1.3 Contribution
Different quality models predict different measures as

quality evaluation and, hence, are difficult to compare. In-
stead, we use an existing, comprehensive quality model and
build focused quality models using various machine learning
approaches based on the same set of measures that the com-
prehensive quality model uses. This way, we can analyse the
accuracy of the prediction models. We use the maintain-
ability part of the Quamoco base model as example for a
comprehensive quality model, because its evaluations have
a good correspondence to expert opinion [28], and estab-
lished approaches, such as random forrest and regression, for
building the focused models. In addition, we investigate the
difference if manually collected measures are included. This
is important, because those measures incur the highest costs
to collect. We perform all the comparisons using an estab-
lished approach: random partitions for model building and
testing, comparison to a random predictor as baseline, the
standardised accuracy measure SA [25] and effect sizes [6].

Our results show that it is possible to build a focused
quality model based on a predictor: The best of the tested
predictors relies only on 10 measures, compared to several
hundred ones in the full model, but its accuracy is 61 %
with an effect size of 0.70. Furthermore, our results show
that the expert-based measures cannot be neglected, as the
focused model built without expert-based measures works
considerably worse for predicting evaluations which include
expert-based measures.

2. QUAMOCO QUALITY MODEL
In the research project Quamoco, we developed a qual-

ity model for defining and evaluating quality [28]. The aim
was that the resulting quality model should bridge the gap
between abstract quality characteristics and concrete mea-
sures. Thus, the quality model defines factors, as an ab-
straction level between abstract quality characteristics and
quantifiable measures. Such a comprehensive quality model
support developers and quality engineers in different tasks.
For instance, a Quamoco quality model can be used in re-

quirements engineering as a checklist, so that one does not
forget important quality characteristics and then add con-
crete factors and measurements so that the quality require-
ment is testable. The task a quality model can support best,
however, is the evaluation of the quality of a software prod-
uct.

We built the Quamoco base quality model as a collection
of widely applicable quality factors and measures for the
programming languages Java and C#. We describe the con-
cepts and structure of the base model, then its contents and,
finally, the quality evaluation method based on the quality
model.

2.1 Concepts and Structure
We started the Quamoco project, because we perceived

a gap between abstract quality characteristics and concrete
measurements [28]. We found it very hard to assign very
detailed measures to the very broad quality characteristics,
which are hard to further break down, and aggregate them
to a sensible quality evaluation result. Therefore, we kept
the abstract level, which we called the quality aspect level,
and the concrete level which we called the measure level. As
shown in Figure 1, we added an additional level, on which we
describe factors of the product (properties of entities) that
have an impact on the quality aspects and are measured by
the measures. This is, for example, similar to the quality-
carrying properties of Dromey [10].

Missing
comment

Quality
aspect

Clone
coverage

Measure
Incomplete
comment

Product
factor

Product quality

Maintainability Reliability

Duplication of
source code

Documentation
degree

Figure 1: Schematic Structure of the Quamoco Base
Quality Model

Quamoco quality models have more elements and details
as shown in Figure 1. For instance, all the quality aspects,
product factors and measures have IDs and descriptions.
The impacts between product factors and quality aspects
can be positive or negative and have a justification. There
is additional information on how measurement results can
be collected. We concentrate, however, on the information
necessary for the following.

In principle, one can use any quality aspect hierarchy but
to be consistent with others, we included the ISO/IEC 25010
product quality hierarchy in the Quamoco base quality
model. The product factor level contains then various prop-
erties of the product, mostly concentrating on the source

code. The documentation degree of Figure 1, for instance,
has the following description:

A source code’s documentation degree is high if
it is commented as needed.

This product factor is not directly measurable, and thus we
operationalize it by measures, which check whether com-
ments are missing or incomplete. For missing comments, we
have, for example, the tool ConQAT1 which gives us loca-
tions in Java source code where there should be a JavaDoc
comment but it is not there. Missing comments are only
part of the evaluation of documentation degree. It is also
important what the comments contain. Therefore, there is
also the manual measure incomplete comment which gives
the proportion of incomplete comments in the source code.
Together, the two measures can give a good impression of
the degree of documentation of the source code.

To aid the structuring of product factors in a hierarchy
and the clear definition of product factors, we associate an
entity with each product factor. An entity is a part of the
software product, e.g. the whole source code, sub-routines
or statements. For documentation degree the entity is the
comment in the source code.

We have done intensive empirical validations of the
Quamoco approach and especially the Quamoco base
model [28, 18]. We found that quality evaluations using
the base model led to results that corresponded well with
expert opinion. Especially the maintainability part of the
base model seems to give very accurate evaluations. There-
fore, we assume that the base model gives valid estimates of
the quality level of a software system.

2.2 Contents of the Quamoco Base Model
The base model’s main objective is to describe software

quality in a way that a wide range of software products can
be evaluated without requiring large effort upfront. To reach
this goal, the Quamoco project partners conducted various
workshops to collaboratively transfer their knowledge and
experience into the Quamoco model structure.

The resulting quality model represents our consolidated
view on the quality of software source code and is, in prin-
ciple, applicable to any kind of software. It details quality
down to particular analysis tools as instruments for the eval-
uation of Java and C# systems, and, hence, enables compre-
hensive, tool-supported quality evaluation without requiring
large adaptation or configuration effort.

In total, the base model comprises more than 1,500 model
elements. Out of these, there are 201 product factors with
an impact to quality aspects measured by 526 measures for
both Java and C#. This reflects that a product factor can
be measured by more than one measure and it can also be
relevant for several programming languages. The measures
contain 8 manual ones and 518 that are provided by one of
12 different tools. The tools most relied upon are FindBugs
(Java, 361 rules modelled) and Gendarme (C#, 146 rules).
Other tools integrated into our model include PMD and sev-
eral clone detection, size and comment analyses, which are
part of the quality assessment framework ConQAT.

To illustrate the contents of the base model, we will de-
scribe two examples of product factors together with their
measures and impacts. As described above, the largest frac-
tion of measures refers to static code analysis tools. One
1http://www.conqat.org

example is the FindBugs rule FE TEST IF EQUAL TO -
NOT A NUMBER, which scans Java code for equality
checks of floating point values with the Double.NaN con-
stant. The Java language semantics defines that nothing
ever equals NaN, not even NaN itself, so that (x == Dou-
ble.NaN) is always false. To check whether a value is not a
number, the programmer has to call Double.isNaN(x). This
rule is an instrument for the doomed test for equality to NaN
measure, which measures the factor general expression appli-
cability for comparison expressions, along with several other
measures. This factor in turn impacts functional correct-
ness, because the developer intended to check a number for
NaN, but the actual code does not. It furthermore impacts
analysability because to understand the intention of this con-
struct demands additional effort.

Rule-based code analysis tools cannot detect every kind
of quality problem. Therefore, the base model also con-
tains product factors based on established research results,
metrics, and best practices. For instance, identifiers have
been found to be essential for the understandability of source
code. Whether identifiers are used in a concise and consis-
tent manner can only partly be assessed automatically [9].
Therefore, the factor conformity to naming convention for
source code identifiers contains both automatic checks per-
formed by several tools and manual measures for assessing
whether identifiers are used in a consistent and meaningful
way.

2.3 Evaluation Method and Tooling
We evaluate the quality of a software product using the

quality model by adding evaluation specifications to prod-
uct factors and quality aspects. For both, we evaluate on
the scale [0, 1] expressing the degree to which the factor is
present in the system. An evaluation of 0 means the factor
is not present in the system, while 1 means the factor is fully
present in the system. The evaluations of product factors
are mappings from the values of its associated measures to
the scale [0, 1]. We define a minimum threshold and a maxi-
mum threshold; below the minimum threshold 0 is assigned
and above the maximum threshold 1 is assigned. Between
these thresholds, the evaluation changes linearly. The qual-
ity aspects evaluate simply by aggregating the product fac-
tors that have an impact on them. The aggregation is done
by weighted sums similar to [1].

Our goal was to use very simple evaluations and aggre-
gations so that it is easily comprehensible for practitioners.
The challenge lay in defining reasonable thresholds for the
evaluations. We calibrated these evaluations by measuring
a large number of open source systems to find out what are
“normal” values [17]. These defined the thresholds, we also
reviewed and corrected based on expert opinion. For ex-
ample, the measure clone coverage denotes the probability
that for a randomly chosen statement in the source code,
there exists a copy. We calculated the quartiles of the data
from 125 Java systems, removed the outliers and used the
minimum (0.0) and maximum (0.57) as thresholds.

The scale from 0 to 1 is very general and, hence, suit-
able to integrate various measures and factors. To help the
quality engineer in interpreting the results for quality as-
pects, we added an additional step: the transformation into
a grade scale. Being a German research project, we chose
the German school grades as our grade scale. It goes from
1 to 6, 1 being the best and 6 the worst grade. The analogy

http://www.conqat.org

we used was a dictation at school. If you have more than
10 % of your text wrong, you will get a 6. Hence, 0–0.90
gives a 6, 0.90–0.92 a 5 and so on. This turned out to be
well comprehensible for practitioners [28].

For creating quality models and conducting automated
quality evaluations, we developed a tool chain [7]. It con-
sists of a graphical quality model editor used for quality
modelling and the quality assessment toolkit ConQAT2 used
for analysing artefacts and data. ConQAT and the Quamoco
quality model editor are open source software licensed under
the Apache 2.0 license.

ConQAT is a toolkit for the creation of quality dashboards
that is configurable with a graphical domain-specific lan-
guage. It provides diverse quality analyses out of the box
and integrates with code analysis tools like Findbugs, PMD,
or Gendarme. The results of the quality analyses are visu-
alised in HTML dashboards. For conducting quality evalu-
ations based on the quality model, the quality model editor
allows to automatically generate a ConQAT configuration
that contains all the required analyses to evaluate the soft-
ware product according to the specifications in the quality
model.

3. RESEARCH STRATEGY
We detail in the following how we conducted our ex-

periment to compare the evaluations of the comprehensive
Quamoco base model with a set of focused quality models
built by machine learning.

3.1 Research questions
Our question overall is: Are comprehensive quality models

necessary for evaluating software quality? Hence, we want
to know if we can come to similar evaluation results using
focused models, in our case built from existing data using
machine learning approaches. In order to apply machine
learning in a meaningful way, we need a large enough set of
existing data. Thus, we will use the part of the Quamoco
base model focusing on maintainability, because this part
is the most comprehensive and well-elaborated one. It in-
cludes 378 maintainability-related measures and evaluates
and aggregates them to a single grade for maintainability.

To further structure our study, we use two research ques-
tions reflecting the general performance of the focused mod-
els as well as the effects of expert-based measures:

• RQ 1: What is the performance of focused quality
models built using machine learning algorithms?

The large number of measures in the Quamoco base model
reflects the diversity of influences in the code onto mainte-
nance. Under certain circumstances, however, we would like
to be able to get an evaluation that is less accurate but needs
less measures. For example, tools might not be available or
analyses run too long for an hourly analysis. Therefore, we
investigate to what extent it is possible to build a predictor,
which calculates an evaluation result using a small number
of measures.

• RQ 2: What is the performance of the focused quality
models including additional expert-based measures?

An especially interesting use case for a focused quality model
would be to avoid manual, expert-based measures. They are

2http://www.conqat.org/

usually collected during manual reviews, which means they
are elaborate to collect and cannot be frequently measured.
We build the predictors for RQ 1 using a large number of sys-
tems, for which only fully automated measures are available,
however. For only 15 systems we have expert-based mea-
sures which are part of the Quamoco base quality model.
In this research question, we focus on how the predictors
perform for these 15 systems.

3.2 Predictor models
As focused quality models we use predictor models as

known from machine learning, which predict the quality
evaluation results of the comprehensive quality model. We
use the following common machine learning algorithms to
create the predictor models:

• Linear Regression: We use multiple linear regression,
which is modelling the distribution of a dependent vari-
able, using one or more independent variables. Linear
regression models the relation between the dependent
variable and the independent variables by fitting a lin-
ear equation to observed data. In our case, the inde-
pendent variables are the measures of the Quamoco
quality model, and the dependent variable is the eval-
uation result for maintainability. We do not use data
transformation, as the inspection of the residual plots
suggested a random distribution of the residuals and
thus a good fit of the linear model.

• Classification Trees: We use the prediction method
of classification trees according to [5]. This machine
learning approach builds a tree in which the leafs rep-
resent the values of the dependent variable, the nodes
represent branches based on the independent variables.
Such a tree is constructed by recursively partitioning
the data and deriving a branching condition for the
resulting node. This approach is only applicable to
categorical data, as in our case the school grades.

• Random Forests: Random Forests [4] are defined as
a combination of tree predictors, whereby each tree
is constructed based on a random selection of sam-
ples from the independent variables and Breiman’s
idea called bagging which reduces variance and helps
to avoid overfitting. Using Random Forests we grow
many classification trees where to classify an object
the input has to be sent through all of the generated
trees in the forest. Each of the trees performs classifi-
cation and “votes” for the most popular class. At the
end the forest is choosing the classification with the
most votes by all of the trees in the forest.

Since not all predictors allow us to influence the num-
ber of variables they use, we apply a forward selection ap-
proach [12] for most predictors to incrementally increase the
number of used variables. The forward selection is a simple
and often used data-driven model building approach. In this
approach, we start with an empty model containing no inde-
pendent variables. The independent variables are added one
at a time, testing all not yet included variables in each step
and adding the most significant variable. The procedure is
repeated until there are no more improvements in the model
by adding another independent variable.

Concerning these machine learning algorithms, we use the

http://www.conqat.org/

following predictor models to investigate if they are useful
for creating a focused quality model:

• Random Guessing : Instead of doing an actual pred-
ition based on independent variables, the random
guessing approach returns a random value as predicted
value. The distribution of the returned values is the
same as that of the dependent variable. We use the
random guessing approach as baseline to see how much
the other predictors improve over it.

• 5 %-Quantile of the Random Guesses (5 % of the best
guesses): This predictor looks at the 5 % of the best
guesses. It means that any value of accuracy that is
better than this threshold has a chance of less than 1
in 20 to be a random occurrence.

• Linear Regression Model with Forward Selection: This
predictor combines the linear regression and the for-
ward selection algorithm described previously.

• Linear Regression Model with Backward Elimination:
This predictor model applies the inversion of the for-
ward selection to the linear regression. It starts with
the maximum model consisting of all independent vari-
ables. The deletion of each variable is tested at each
step and the variable that has the smallest significance
is deleted.

• Linear Regression Model with Bidirectional Elimina-
tion: This predictor applies a combination of forward
selection and backward elimination to the linear re-
gression. At at each step, all independent variables
are tested for either their inclusion or exclusion.

• Classification Tree with Different Complexity Parame-
ters: When constructing classification trees it is possi-
ble to influence the number of used independent vari-
ables by predefining a required fit (denoted complex-
ity parameter) of the independent variables with the
dependent variable. The tree construction algorithm
then selects the needed number of independent vari-
ables to achieve the required fit. We construct a series
of classification trees with different complexity param-
eters and thus a different number of independent vari-
ables.

• Classification Tree with Forward Selection: Instead of
controlling the number of used independend variables
by the complexity parameter, for this predictor we
apply the forward selection approach to classification
trees.

• Random Forest with Forward Selection: Since the al-
gorithm for constructing random forest predictors does
not allows any control over the number of independent
variables used, here we apply the forward selection ap-
proach to random forests.

3.3 Model Comparison
We need statistics for comparing the performance of pre-

dictors. A commonly used statistics for assessing the perfor-
mance of a predictor is to calculate the magnitude of rela-
tive error (MMRE). Shepperd and MacDonell [25] state that
“biased accuracy statistics such as MMRE are deprecated.”
They introduce a new validation framework to assess and

compare prediction systems. We will use their framework
and introduce the main statistics proposed by them in the
following.

For measuring the performance of a predictor, we use the
statistic mean absolute residual (MAR), defined as follows:

MAR =

∑n
1 | (yi − ŷi) |

n
(1)

MAR is the mean of the absolute error values for the obser-
vations providing information with regard to the prediction
model fit. It has the advantage of being an unbiased statis-
tic, because it is not based on ratios.

To interpret the MAR statistic, Shepperd and MacDon-
nell introduce the idea of comparing a given predictor with
a baseline predictor. As baseline predictor we take a sim-
ple approach of using the random guessing predictor. This
results in the standardised accuracy measure (SA), which
is the MAR relative to random guessing. For a suggested
prediction technique pi, where i denotes a prediction tech-
nique used, the standard accuracy measure is defined as the
following:

SApi = 1− MARpi

MARp0

(2)

where MARp0 is the mean value of a large number of ran-
dom guessing runs. It is defined as prediction of ŷi for the
target case t by random sampling over all the remaining
n − 1 cases and takes ŷt = yr where r is randomly chosen
from 1 . . . n∧r 6= t. After many runs, the MARp0 converges
on using the sample mean. The interpretation of SA is that
the ratio shows how much pi is better than random guessing
p0. A value close to zero or a negative value is considered
bad for the predictor model. A low MAR and a resulting
SA close to 100 % would mean that the predictor model is
almost perfect.

In addition to the SA statistic, we use the effect size statis-
tic to investigate how big the difference is really in relation
to the overall variation in the random guesses. It is defined
by Glass’s ∆ [25] as follows:

∆ =
MARpi −MARp0

sp0
(3)

where sp0 is the sample standard deviation of random guess-
ing. The Glass’s ∆ is a biased estimator for small sized
samples or where there is a large difference in the size of the
samples. It standardises the difference between two differ-
ent prediction models and it gives context to the difference
of amount of variations in the measures. The effect size as
suggested by Cohen [6] can be categorised as small (≈0.2),
medium (≈0.5) or large (≈0.8).

3.4 Finding a Model with a Low Number of
Measures

Our goal is not to just find a predictor which performs
well in predicting the quality evaluations of the comprehen-
sive quality model, but to find a predictor which does so
using a low number of measures. Thus, for each type of
predictor, we construct a series of it, each using a different
number of measures. For analysis and discussion, we then
select two predictors for each type: First, we take a look
at the predictor having the best result in terms of the SA
statistic. Second, we select the predictor using the minimal
number of measures, so that its MAR is not more than 10 %

less than the MAR of the best-performing predictor. Cal-
culating percentages of the MAR statistic is valid since it is
an absolute statistic.

3.5 Study Objects
For conducting automated quality evaluation, we need

software products to be evaluated. We used the reposi-
tory SDS [2, 23], containing about 18,000 open-source Java
projects. These projects have mostly been retrieved from
open source databases such as Sourceforge through a web-
crawling approach. In essence, this repository contains
mirrors of the version control repositories of the before-
mentioned databases. The SDS repository only contains
the source code, not the binaries. For the quality evalua-
tion, however, binaries compiled with the debug-option of
the Java compiler are needed. We compiled all projects in
a batch approach, because the effort to manually config-
ure and compile them is prohibitive. The compilation of all
18.000 projects took about 30 hours, executed in parallel on
12 personal computers. Of all available projects about 6.000
compiled successfully. Others could not be compiled because
of missing external libraries or because of code needed to be
generated during the build process. We used all systems of
the SDS repository larger than 5.000 LoC as a benchmarking
base, resulting in 2041 systems. We excluded smaller sys-
tems, because many open source repositories contain soft-
ware projects initiated by single persons without finishing
them; these projects then remain in the repository without
ever being used [3, 24]. Of the 2041 systems that com-
piled, the quality analysis tool run successfully on 1994 sys-
tems. Thus, these 1994 systems are used as study objects.
The distribution of sizes shows that half of the systems are
smaller than 11 kLoC and 90 % of the systems are smaller
than 50 kLoC. Only 54 systems are larger than 100 kLoC,
with the largest system having 477 kLoC.

Regarding RQ 2 we have 15 systems available, for which
the expert-based measures of the quality model have been
collected. Besides our own tool (ConQAT), we selected the
most downloaded SourceForge3 projects written in Java. Of
these projects we included only those, where it was possi-
ble to compile the source code on our own with reasonable
effort (less than one hour work per system). The systems
were: log4j-1.2.16, jabref-2.3, tvbrowser-2.7.6, rssowl-2.0.6,
checkstyle-5.3, apache-commons (of Dec 2010), conqat-
core-2.6, conqat-bundles-2.6, fckeditor-2.6, freemind-0.8.1,
hibernate-3.6.0, openproj-1.4, sweethome3d-3.0, thight-vnc-
java-1.3.10, and tomcat-6.0.24. For each of these systems,
the expert-based measures were collected independently by
two experts. The results were compared and differences in
the expert judgement were discussed until a common judge-
ment was achieved.

3.6 Procedure
The first step in our study is to collect the study data. For

this purpose, we apply the Quamoco quality evaluation ap-
proach to the study objects using the Quamoco base quality
model. As a result, for each study object, we get the mea-
surement data for all measures of the quality model, as well
as the aggregated values for the quality aspects. The full
data is available in the PROMISE repository4. As we con-

3http://sourceforge.net/, accessed in December 2010.
4http://promisedata.googlecode.com

centrate on the maintainability part of the base model, we
only use factors and measures related to maintainability.

In the next step, we create and evaluate the predictors for
RQ 1. As independent variables all measures of the quality
model are used, while as dependent variable, we use the eval-
uation of the quality aspect maintainability of the quality
model. The experiments are implemented in a combination
of Java and R5. R provides packages for all the predictors
we use and it implements the statistics for evaluating the
predictors. The Java program calls R scripts and is used
to implement the forward/backward selection and the cross-
validation. We use a 4-fold cross validation, which means
the available study objects are partitioned into four subsets.
Of the four subsets, one subset is used for validating the
performance of the predictor, while the other three subsets
are used for creating the predictor. This process is repeated
four times, with each subset used as validation data once.
As the result for the MAR statistic we use the average of the
four runs. We also experimented with other folds (10-fold
and 20-fold cross-validation), but the results did not change
significantly.

For RQ 2, the predictors are built using all study objects
of RQ 1. Since, for the study objects of RQ 1 the expert-
based measures are not available, these predictors do not in-
clude the expert-based measures. These predictors are then
evaluated by predicting for the 15 study objects of RQ 2.

4. RESULTS AND DISCUSSION
In this section, we describe the results of the experiments

and an interpretation according to the research questions of
Section 3.

4.1 RQ 1: Performance of Focused Quality
Models

As outlined in Section 3, we built six predictors. We eval-
uated the performance of each predictor for varying num-
bers of variables used for prediction. Figure 2 shows the
SA statistics of the predictors depending on the number of
variables used by the predictor. All predictors perform bet-
ter with more variables although there are also slight degra-
dations for, e.g. classification tree with forward selection.
Most predictors have an SA between 30 % and 55 % with
below 10 variables, which is already a reasonable improve-
ment to random guessing. The maximum SA is about 65 %
achieved by the random forest with forward selection.

According to the approach of Section 3 to compare the
predictors, we determine the number of variables where each
predictor performs best. Additionally, we determine the
minimum number of variables, for which the performance
cannot be improved by more than 10 % by adding more vari-
ables. Table 1 gives the details. The minimal number of
variables for the optimal MAR ranges between 16 and 87.
This seems to be due to slight changes in the MAR. If we
look for a 10 % improvement, the number of variables is re-
duced to 6–18. This conforms also to our observation that
in Figure 2 several of the predictors have achieved a close to
maximum SA at about 10 variables.

Table 2 gives the MAR, SA and ∆ statistics for the pre-
dictors with the number of variables determined above.

Regarding the performance of different predictors, in Fig-
ure 2 we see that the random forest predictor performs best

5http://www.r-project.org

http://sourceforge.net/
http://promisedata.googlecode.com
http://www.r-project.org

●

●

●

●

●

●

●
●

●
●

●
●

●
● ●

● ●
● ●

●
●

●
● ● ● ●

●

0 10 20 30 40 50 60

35
40

45
50

55
60

65

Number of Variables

S
A

 (
pe

rc
en

ta
ge

 o
f i

m
pr

ov
em

en
t o

ve
r

ra
nd

om
 g

ue
ss

in
g)

●

●

●

●

● ●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ●

● ●

●

Random Forest (Forward Selection)
Classification Tree (Forward Selection)
Classifiction Tree (different complexity param.)
Regression (Forward Selection)
Regression (Bidirectional Elimination)
Regression (Backward Elimination)

Figure 2: Performance of Predictors Depending on Numbers of Variables Used

Number of Variables
Predictor minimal 10 %-best

MAR MAR
Random Guessing – –
5 %-qtl. of Random Guess. – –
Linear Regr. (Forw. Sel.) 62 13
Linear Regr. (Backw. Elim.) 60 13
Linear Regr. (Bidir. Elim.) 87 18
Class. Tree (dif. cmplx. parm.) 26 6
Class. Tree (Forw. Sel.) 16 7
Random Forest (Forw. Sel.) 51 10

Table 1: Optimal Number of Variables for the Predictors

Predictor
minimal MAR 10 %-best MAR

MAR SA ∆ MAR SA ∆
Random Guessing 1.07 0.00 %
5 %-quantile of Random Guessing 1.05 2.39 %
Linear Regression (Forward Selection) 0.49 54.67 % 0.61 0.53 50.47 % 0.57
Linear Regression (Backward Elimination) 0.48 54.90 % 0.62 0.53 50.47 % 0.57
Linear Regression (Bidirectional Elim.) 0.47 56.16 % 0.63 0.51 51.96 % 0.58
Classification Tree (different complexity param.) 0.50 53.29 % 0.60 0.53 50.15 % 0.56
Classification Tree (Forward Selection) 0.47 56.45 % 0.73 0.48 54.36 % 0.57
Random Forest (Forward Selection) 0.37 65.64 % 0.74 0.40 60.90 % 0.70

Table 2: Statistics for Predictors

Number of Variables 6 8 10 12 14 16
Data set without expert-based measures 55.81 % 59.76 % 60.90 % 63.25 % 63.73 % 63.90 %
Data set with expert-based measures 32.11 % 33.75 % 35.27 % 43.16 % 42.51 % 46.72 %

Table 3: SA statistic for data sets with/without expert-based measures

with some distance to the other predictors. A reasonably
good prediction is achieved with 10 variables with the MAR
statistic only decreasing by 10 % over the best achievable
MAR with 51 variables. The SA metric shows the random
forest predictor with 10 variables is working 61 % better than
the baseline random guessing predictor. When using 51 vari-
ables it achieves an increase of 66 % over the random guess-
ing predictor. All other predictors achieve an SA value no
better than 56 % which is considerably lower than the value
of the random forest predictor. Overall, we see a reasonable
positive behaviour of the predictors.

The ∆ statistic is about ≈ 0.6 for all predictors, except for
random forests and the classification tree with forward se-
lection, which reach ≈ 0.75. Considering the smaller, 10 %-
models, only the random forest still achieves 0.70. This is
a medium to high effect size. Therefore, the reasonable im-
provement over random guessing has also a medium to high
effect. Based on this, we conclude that a random forest pre-
dictor using 10 variables is well suited to be used as a focused
quality model. Other predictors with roughly the same num-
ber of variables would still yield reasonable results.

4.2 RQ 2: Performance Including Expert-
Based Measures

In the second research question, we used a random forest
predictor, because it proved itself best in RQ 1. The random
forest predictor was built using all study objects of RQ 1,
and therefore it does not include the expert-based measures.
It was then used for predicting the quality assessment results
for 15 systems, which included expert based measures.

Figure 3 and Table 3 show the SA statistic for different
numbers of variables for two different predictors and data
sets: (1) the data without expert-based measures is the re-
sult of the cross-validation predictor of RQ 1 (2) the data
with expert-based measures is the result of the predictor es-
pecially built for RQ 2 and applied to the 15 systems men-
tioned above. The SA statistic for the prediction of the
data including expert-based measures is considerably lower
than in the results of RQ 1. The SA statistic reaches its
maximum of 48.60 with a random forest using 17 indepen-
dent variables. Thus, the prediction performance is worse
than that of the worst predictor in RQ 1 (when consider-
ing SA values for equal numbers of variables). Therefore,
we conclude that the expert-based measures play an non-
neglectible role. Accordingly, a predictor not considering
these measures performs comparatively badly.

5. THREATS TO VALIDITY
Our investigation faces several threats to the validity of

our results. We discuss internal and external validity threats
as well as our mitigation strategies.

5.1 Internal Validity
One threat to internal validity is the choice and interpre-

tation of the MAR, SA, and ∆ statistics. For minimising

●

●

●

●
●

●

●
●

● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 5 10 15 20 25 30

0
10

20
30

40
50

60
Number of Variables

S
A

●

●
●

●

● ●
● ●

●
●

●

● ● ●

● ●
● ● ● ● ● ● ● ● ● ● ●

●

● ●

●

Systems without expert−based measures
Systems with expert−based measures

Figure 3: Random Forest Predictor used on data
sets including and excluding expert-based measures

this threat, we aligned our research according to published
guidelines as described in the study design.

In RQ 2 a threat to validity is the low number (15) of
test systems. It could distort the resulting values for the
SA metric. For assessing this threat, we conducted an ad-
ditional experiment, to investigate the variance of the SA
statistic when only 15 systems are used. We repeated the
experiments of RQ 1, but calculated the SA statistic by pre-
dicting the values of only 15 randomly chosen systems (1000
tries). The standard deviation of the SA statistic was 0.0795.
Since, the values of SA were 0.6077 and 0.4586 respectively,
we regard this threat as minor.

A third threat to internal validity is the set of predic-
tors we tested. Maybe other prediction approaches (such as
neural networks) could yield better results. However, since
we regard the prediction performance of random forests as
satisfactory this is no threat to our conclusions.

Finally, it is a threat to validity that in our experiments
that showed correspondence with expert opinion [28], we
included the manual measures but in our experiments for
RQ 1 we could not include them as they are not available
for so many systems. Hence, we cannot ensure that the
Quamoco base model is really valid in that case. Therefore,
we included RQ 2 to specifically look at the influence of
manual measures.

5.2 External Validity
To generalise our results, the data and the systems we em-

ployed in our study need to be representative for a broader
population. We made sure that our sample of open source

systems contains a wide spectrum of systems with different
sizes and different types of applications.

Despite the variations in the systems, they have all been
built in Java. Several of the measures we used are specific
for this programming language. Hence, the results may be
different for other languages with other types of findings.
As Java is a widely used programming language and in per-
forming the study we did not observe something that seemed
specific to Java, we expect this threat not to jeopardise the
final conclusions.

We mostly employed automatic static analysis, because it
is feasible for any company to collect data this way. Never-
theless, other types of analysis could give different results.
We consider our restriction as necessary to be able to per-
form the study with this number of systems. Furthermore,
it is comparable to the large amount of existing work on
models based on static analysis data.

Finally, we used a quality model focusing on the quality
aspect of maintainability. This could impair the general-
isability to other quality aspects. However, other studies
(cf. [19, 22]) show that predicting security and defects based
on static code analysis works well and, hence, we assume the
same holds for maintainability.

6. RELATED WORK
In the research area of defect prediction, we can find a lot

of work on source code metrics and their statistical analysis.
Fenton et al. [11] and Hall et. al. [14] report on literature
surveys summarising a large number of publications on de-
fect prediction. Most of these studies have a different focus
than our study. They build predictors for predicting faulty
components within one system. We instead, build predictors
being applied to a large number of software systems and pre-
dicting a given quality evaluation result instead of faultiness
of components. Furthermore, these studies use general code
metrics like complexity or lines-of-code as independent vari-
ables, while we use hundereds of static-code analysis rules.
Nevertheless, some conclusions of these studies are relevant
for our study.

Hall et. al. concludes that no general recommendation for
a certain prediction technique can be given. Rather, depend-
ing on diverse context factors, different prediction techniques
work better or worse. This supports our approach of using
several prediction techniques and comparing the results.

To the best of our knowledge there is no study directly re-
sembling our approach of using predictors to predict a qual-
ity evaluation result from a comprehensive quality model.
The approach of Nagappan and Ball [21] comes closest to our
approach, because they use the rules of static code checkers
as independent variables, like we do. However, they again
try to predict faulty components based on it with quite suc-
cessful results. We take this result as an indicator that rule-
based static code analysis is principally suited for quality
analysis.

Another similar approach to ours is that of Wagner [27].
He described an approach to express a quality model sim-
ilar to the Quamoco model using Bayesian nets. He found
that the structure of the quality model transforms well into
a Bayesian net but the prediction results were mixed. A
reduction of measures was not considered.

While Hall et. al. generally do not recommend a certain
prediction technique, there is some evidence, that in certain
contexts random forests work best. For the NASA data

set, both Guo et al. [13] and Lessmann et. al. [15] show a
better performance of random forests over other prediction
techniques. This result is in line with out results, where the
random forest also worked best.

7. CONCLUSIONS AND FUTURE WORK
For evaluating the quality of software systems, compre-

hensive quality models have been built to reflect the diver-
sity in software quality factors. The models rely on large
numbers of measures (usually some hundreds) to get to a
quality evaluation. On the other hand, there are focused
quality models making use of a small set of measures for
evaluating quality as well. Such a focused quality model has
advantages as less effort is necessary for collecting data. If
the inclusion of a high number of measures in comprehen-
sive quality models really gives significantly different results
than focused quality models has not been investigated so
far.

Our results from comparing the Quamoco base model to
focused models built using machine learning show that it is
possible to build an evaluation model only relying on 10 mea-
sures while having a standardised accuracy of 61 %. The
reduction from 378 measures in the comprehensive model to
10 measures facilitates the application in practice, because
only 10 measures need to be calculated and, e.g., checked
for false positives. However, if the evaluation model is to
be used as a basis for contracting or design guidelines, it
must be kept in mind that the results produced by the re-
duced model may differ from the results produced by the
comprehensive model.

A major advantage of the focused model would be, if its
reduced number of measures enabled to omit expert-based
measurements. Our results indicate that the expert-based
measures play a role that should not be neglected. The
evaluation model built without expert-based measures works
considerably worse for predicting assessments which include
expert-based measures.

We put specific emphasis on the repeatability of our re-
sults. The used quality model and tool support for qual-
ity evaluation is freely available on the Quamoco web site6.
We further publish our data and results in the PROMISE7

repository so that future research can easily reassess and
improve our findings.

For future work we plan to investigate different constraints
for selecting the measures used in the predictor. Possible
constraints could be the number of different tools needed to
calculate the measures, the price and effort for using a tool
or the preciseness of measures.

8. ACKNOWLEDGMENTS
The presented work was partially funded by the German

Federal Ministry of Education and Research (BMBF), grant
“Quamoco, 01IS08023B”.

9. REFERENCES
[1] T. Alves, C. Ypma, and J. Visser. Deriving metric

thresholds from benchmark data. In Proc.
International Conference on Software Maintenance
(ICSM ’10). IEEE Computer Society, 2010.

6http://www.quamoco.de/
7http://promisedata.googlecode.com

http://www.quamoco.de/
http://promisedata.googlecode.com

[2] S. Bajracharya, J. Ossher, and C. Lopes. Sourcerer:
An internet-scale software repository. In Proc.
Workshop on Search-Driven Development–Users,
Infrastructure, Tools and Evaluation (SUITE ’09).
IEEE Computer Society, 2009.

[3] K. Beecher, A. Capiluppi, and C. Boldyreff.
Identifying exogenous drivers and evolutionary stages
in FLOSS projects. Journal of Systems and Software,
82(5):739–750, 2009.

[4] L. Breiman. Random Forests. Machine Learning,
45(1):5–32, 2001.

[5] L. Breiman, J. Friedman, R. Olshen, and C. Stone.
Classification and Regression Trees. Wadsworth, 1984.

[6] J. Cohen. A power primer. Psychological Bulletin,
(112):155–159, 1992.

[7] F. Deissenboeck, L. Heinemann,
M. Herrmannsdoerfer, K. Lochmann, and S. Wagner.
The Quamoco tool chain for quality modeling and
assessment. In Proc. International Conference on
Software Engineering (ICSE ’11). ACM Press, 2011.

[8] F. Deissenboeck, E. Juergens, B. Hummel, S. Wagner,
Benedikt Mas y Parareda, and M. Pizka. Tool
Support for Continuous Quality Control. IEEE
Software, 25(5):60–67, 2008.

[9] F. Deissenboeck and M. Pizka. Concise and consistent
naming. Software Quality Journal, 14(3):261–282,
2006.

[10] R. G. Dromey. A model for software product quality.
IEEE Transactions on Software Engineering,
21(2):146–162, 1995.

[11] N. E. Fenton and M. Neil. A critique of software
defect prediction models. IEEE Transactions on
Software Engineering, 25(5):675–689, 1999.

[12] R. J. Freund and W. J. Wilson. Regression analysis:
Statistical modeling of a response variable. Acad.
Press, San Diego, Calif, 1998.

[13] L. Guo, Yan Ma, B. Cukic, and H. Singh. Robust
prediction of fault-proneness by random forests. In
International Symposium on Software Reliability
Engineering (ISSRE 2004), pages 417–428. IEEE
Computer Society, 2004.

[14] T. Hall, S. Beecham, D. Bowes, D. Gray, and
S. Counsell. A Systematic Review of Fault Prediction
Performance in Software Engineering. IEEE
Transactions on Software Engineering, PP(99):1, 2011.

[15] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch.
Benchmarking Classification Models for Software
Defect Prediction: A Proposed Framework and Novel
Findings. IEEE Transactions on Software
Engineering, 34(4):485–496, 2008.

[16] R. Lincke, T. Gutzmann, and W. Löwe. Software
quality prediction models compared. In
Proc. International Conference on Quality Software
(QSIC 2010), pages 82–91. IEEE Computer Society,
2010.

[17] K. Lochmann. A benchmarking-inspired approach to
determine threshold values for metrics. In Proc.
Workshop on Software Quality (WoSQ ’12). ACM
Press, 2012.

[18] K. Lochmann and L. Heinemann. Integrating quality
models and static analysis for comprehensive quality

assessment. In Proc. International Workshop on
Emerging Trends in Software Metrics (WETSoM ’11).
ACM Press, 2011.

[19] T. Menzies, J. Greenwald, and A. Frank. Data mining
static code attributes to learn defect predictors:
Software engineering. IEEE Transactions on Software
Engineering, 33(1):2–13, 2007.

[20] K. Mordal-Manet, F. Balmas, S. Denier, S. Ducasse,
H. Wertz, J. Laval, F. Bellingard, and P. Vaillergues.
The Squale model – a practice-based industrial quality
model. In Proc. International Conference on Software
Maintenance (ICSM ’09), pages 531–534. IEEE
Computer Society, 2009.

[21] N. Nagappan and T. Ball. Static analysis tools as
early indicators of pre-release defect density. In Proc.
International Conference on Software Engineering
(ICSE ’05), pages 580–586. ACM Press, 2005.

[22] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller.
Predicting vulnerable software components. In Proc.
Conference on Computer and Communications
Security (CCS ’07), CCS ’07, pages 529–540, New
York, NY, USA, 2007. ACM.

[23] J. Ossher, S. Bajracharya, E. Linstead, P. Baldi, and
C. Lopes. SourcererDB: An aggregated repository of
statically analyzed and cross-linked open source Java
projects. In Proc. International Working Conference
on Mining Software Repositories (MSR ’09). IEEE
Computer Society, 2009.

[24] A. Rainer and S. Gale. Evaluating the quality and
quantity of data on open source software projects. In
Proc. International Conference on Open Source
Systems (ICOSS ’05). UHRA, 2005.

[25] M. Shepperd and S. MacDonell. Evaluating prediction
systems in software project estimation. Information
and Software Technology, 54(8):820–827, 2012.

[26] R. M. Soley and B. Curtis. The consortium for IT
software quality. In Proc. Software Engineering
Approaches for Offshore and Outsourced Development
(SEAFOOD 2010), volume 54 of LNBIP. Springer,
2010.

[27] S. Wagner. A Bayesian Network Approach to Assess
and Predict Software Quality Using Activity-Based
Quality Models. Information and Software Technology,
52(11):1230–1241, 2010.

[28] S. Wagner, K. Lochmann, L. Heinemann, M. Kläs,
A. Trendowicz, R. Plösch, A. Seidl, A. Goeb, and
J. Streit. The Quamoco product quality modelling and
assessment approach. In Proc. International
Conference on Software Engineering (ICSE ’12). ACM
Press, 2012.

	1 Introduction
	1.1 Problem Statement
	1.2 Research Objective
	1.3 Contribution

	2 Quamoco Quality Model
	2.1 Concepts and Structure
	2.2 Contents of the Quamoco Base Model
	2.3 Evaluation Method and Tooling

	3 Research Strategy
	3.1 Research questions
	3.2 Predictor models
	3.3 Model Comparison
	3.4 Finding a Model with a Low Number of Measures
	3.5 Study Objects
	3.6 Procedure

	4 Results and Discussion
	4.1 RQ 1: Performance of Focused Quality Models
	4.2 RQ 2: Performance Including Expert-Based Measures

	5 Threats to Validity
	5.1 Internal Validity
	5.2 External Validity

	6 Related Work
	7 Conclusions and Future Work
	8 Acknowledgments
	9 References

