
Cat egor izat ion of Software Quali t y Pat t erns?

Klaus Lochmann1, Stefan Wagner1, Andreas Goeb2, Dominik Kirchler2

1 Technische Universit�at M�unchen 2 SAP Research
Garching, Germany Darmstadt , Germany

f lochmann, wagnerstg@in.tum.de f andreas.goeb, dominik.kirchlerg@sap.com

A bst r act . In software systems recurring pat terns are often observed
and have been collected and documented in di�erent forms, as for ex-
ample in development guidelines. T hese well-known pat terns are ut ilized
to support design decisions or to automat ically detect �aws in software
systems. For the most part , these pat terns are related to software qual-
ity issues and can also be be referred to as software quality pat terns.
These quality pat terns have to be communicated to the various roles
cont ribut ing to the development of software, e.g., to software architects
or developers. Hence, a comprehensive scheme to categorize the various
types of pat terns is needed to support e�ect ive communicat ion. The cat -
egories should be shaped so that each category can be communicated to
a single organizat ional role in a company. Since each pat tern refers to a
speci�c concept of the software system, a categorizat ion based on sys-
tem modeling concepts is used. T he presented categorizat ion scheme is
grounded on act ivity-based quality models that are already used to col-
lect di�erent pat terns related to the quality of softwaresystems. Based on
two case studies the applicability of the categorizat ion scheme is shown.
Real-world models were categorized using the scheme and the result ing
dist ribut ion of ent it ies within the di�erent classes is discussed.

1 Int roduct ion

In pract ical software engineering, a major challenge is to develop software of
high quality. Professional developers use proven best pract ices and experiences
to tackle it . In order to pass these best pract ices to inexperienced developers
they document recurring pat terns. Sources for such pat terns are, for example,
coding guidelines, style guides, bug pat terns, and architectural pat terns. Style
guides for source code improve its readability by applying a consistent format .
Bug pat terns are used to detect and classify defects in software.

The term quali ty pattern as used by Houdek and Kempter [1] describes a
st ructured way to document and reuse quality-related experience. The authors
de�ne a framework based on Goal/ Quest ion/ Metric-Approach that contains an
abstract , a problem statement in a speci�ed context as well as a solut ion. Our
understanding of the term quality pattern is more general. All product -related

? T hiswork haspart ially been supported by theGerman Federal Minist ry of Educat ion
and Research (BMBF) in the project QuaMoCo (01 IS 08023B/ D).

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

40



pat terns occuring in software that are related to quality are seen as quali ty
patterns by us. The exact de�nit ion of the term is based on quality models and
will be given in sect ion 2.

Pat terns and their relat ion to quality at t ributes of a system are represented
in quality models. The �rst quality model that dist inguishes between quality
at t ributes and quality-in�uencing propert ies of a system is that of Dromey [2].
In this paper the approach of Deissenboeck et al. [3], which extends Dromey's
ideas, is used because it sets development act ivit ies in relat ion to propert ies
of the system. These propert ies are essent ially describing quality pat terns. In
recent work, such quality models are used to de�ne how to achieve quality in a
software system [4,5]. All these quality models focus on software product quality
by de�ning concepts related to the software product itself as opposed to process-
related concepts.

Problem. To e�cient ly communicate the informat ion contained in quality models
a categorizat ion is needed that supports their communicat ion. Many exist ing
quality models provide a categorizat ion according to quality at t ributes. Yet ,
especially for communicat ing the pat terns to di�erent audiences and roles, this
categorizat ion is not opt imal, because it does not divide the quality pat terns
alongside the needs of these organizat ional roles. Furthermore, quality models in
pract ice tend to be large, containing hundereds of pat terns. The handling and
communicat ing of such models posed addit ional challenges.

Contr ibution. In this paper we propose an approach for classifying quality pat -
terns according to abstract ion levels of the system they are referring to. Each
abstract ion level is concerned with di�erent concepts that are relevant for di�er-
ent development steps. Since the di�erent development steps are performed by
di�erent roles within a company, corresponding quality pat terns can be commu-
nicated to these roles.

2 A ct ivi t y-Based Quali t y M odels

Quality models have been used to describe the concept of software quality for
decades [6,7]. Several authors argue that facts describing the system have to be
separated from quality aspects. Dromey [2], for example, int roduces a quality
model that dist inguishes between quality-carrying propert ies and quality at -
t ributes.

Entity

Attribute

Activity

1

*

1 *
Fact

*
1

1
*

Impact

* *

Fig. 1: Meta-Model: Act ivity-Based Quality Model

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

41



Exist ing quality models often use high-level \ -ilit ies" for de�ning quality on a
very coarse level, which is reported to be hard to operat ionalize [3]. To overcome
this shortcoming, act ivity-based quality models (ABQM) were proposed [8]. The
idea there is to break down quality in detailed facts and their in�uence on act iv-
it ies performed on the system. An example for a fact would be \ unambigousness
of source code" , which has an in�uence on the act ivity \ code reading" .

An ABQM is based on a de�ned meta-model (see Fig. 1) whose elements are
described in the following. The beforement ioned facts are modeled as a compo-
sit ion of ent it ies and at t ributes. The ent it ies describe a hierarchically st ructured
decomposit ion of the system and corresponding documents. Ent it ies can be tech-
nical concepts of programming languages such as source code expressions but also
more abstract concepts such as inheritance structure. An ent ity that is character-
ized by an Attribute is called Fact, e.g., [Source Codej UNAMBIGUOUSNESS] denotes
unambiguous source code. Also the act ivit ies are organized in a hierarchy. A top-
level act ivity maintenance has sub-act ivit ies such as code reading, modi�cat ion, and
test ing. The impacts de�ne a relat ionsship between facts and act ivit ies. They de-
scribewhich fact has an in�uenceon an act ivity. For denot ing thepreviousexam-
ple, thefollowing notat ion isused: [Source Codej UNAMBIGOUSNESS]

+
�! [Code Reading].

ABQMs have been used for modeling maintainability [3], usability [9], and
security [4]. In these case studies exist ing knowledge in form of guidelines, check-
lists, standards, etc. has been modeled as an ABQM. The occuring pat terns
found in these documents are modeled as facts in the ABQM, whereby the im-
pact on act ivit ies gives a just i�cat ion for the relevance of the fact .

3 Cat egor izat ion of Ent i t ies

Due to the fact the ent it ies of the ABQM are referring to very di�erent concepts
and abstract ion levels of a system and the fact that real quality models are very
large (e.g., 142 ent it ies in [3]), the task of communicat ing the signi�cant parts
of the model to the appropriate people at the right phase during development
is challenging. Since the act ivit ies are more related to the concerns of stake-
holders, they are not suited as a means for categorizat ion regarding roles in a
company. A software architect , for example, has to take both maintainability
and performance issues into regard.

In the following we propose an approach to st ructure the ent it ies in a way
that is suitable for the goals described above. The most general way of catego-
rizat ion is to dist inguish between ent it ies referring to the software system itself,
and those referring to documents secondarily produced, like documentat ion (see
Fig. 2a). Although ABQMs are also used to model non-system ent it ies, like the
development environment or pocess characterist ics, we focus on product related
ent it ies, because they make up a strong majority of ent ites in our case studies.
We dist inguish between system documentat ion that describes the inner st ructure
and working of the system, and the user documentat ion like operator manuals
etc. Since all ent it ies referring to the software system in some way represent a

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

42



model of it , we will use exist ing concepts from exist ing modeling techniques to
st ructure them.

According to Sch�atz et al. [10] we dist inguish between horizontal and ver-
t ical abst ract ion (see Fig. 2b). Horizontal abst ract ion int roduces a separat ion
of concerns with the dist inct ion between st ructure, behavior, and data. Vert ical
abst ract ion int roduces levels of abst ract ion, whereby the lower the level of ab-
st ract ion, the more details are visible. An example for levels of abst ract ion are
black-box descript ion, white-box descript ion, and the technical implementat ion
of a system.

For each abstract ion level research has been conducted and sophist icated
models are available that we exploit here. Broy et al. [11] describe the architec-
ture of embedded software-intensive systems on di�erent levels of abst ract ion.
In this work we use the concepts depicted in Fig. 2b and described as follows.

Black-box level On this level of abst ract ion the inner working of the system is
omit ted. Therefore, only the interface of the system to its environment and the
user-visible behavior are described.

{ Structural Concepts describe thest ructure of the system. Since, on the black-
box level the internal st ructure isnot visible, only externally visible st ructure
is described here.

{ Behavioral Concepts describe the behavior of the system as seen at the sys-
tem boundary by its environment or rather the user.

{ Interface/ Data Concepts de�ne the syntact ic interface of the system and the
data types that are used by it .

White-box level On this level of abst ract ion the system is described as a white
box, i.e., the internal components of the system are visible. This level is also
called logical architecture.

{ Structural Concepts on this level are the components the system consists of,
and the way in which the components are connected to each other.

(a)

Entities

Software System

Documentation

Horizontal Abstraction

Vertical Abstraction

System Documentation

User Documentation

(b)

Black-Box Level

Implementation Level

White-Box Level

S
tr

u
ct

u
re

B
e

h
av

io
r

D
a

ta
/I

fa
c

e.

V
er

ti
ca

l A
b

st
ra

ct
io

n

Horizontal Abstraction

Fig. 2: Categorizat ion of Ent it ies

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

43



{ Behavioral Concepts on this level de�ne the behavior of each component .
{ Interface/ Data Concepts describe the interfaces of the components.

Implementation level On this level, the actual implementat ion of the system is
described. It consists of both software and hardware elements.

{ Structural Concepts describe the st ructure of the software, e.g., the source-
code, con�gurat ion �les, and hardware, e.g., CPUs, memory, and bus sys-
tems.

{ Behavioral Concepts describe the behavior of the elements on this level.
Thesecan be t iming constraintsof thehardwarebut also behavioral concepts
of the programming language as for example pointers and garbage collect ion.

{ Data Concepts describe the data st ructures used on the source code and
hardware level.

4 Case St udy: T U M M aint ainabi l i t y M odel

At Technische Universit�at M�unchen (TUM) an ABQM for maintainability was
developed in mult iple case studies [3,8]. This quality model was used for the
generat ion of guidelines as well as for the evaluat ion of the results of stat ic code
analysis tools. The model consists of 152 ent it ies, 205 facts, and 30 act ivit ies.
It has to be noted, that some ent it ies are used for st ructuring and are actually
not referring to system concepts at all. These ent it ies typically have no facts
associated with them and were omit ted in the analysis. There were 10 ent it ies
of this kind.

Example In Tab. 1 examples of the TUM maintainability model are shown. In
the�rst row of the table the fact [Distribut ion j EXISTENCE] is de�ned. This fact just
expresses whether there are dist ributed parts within the system or not . Because
it relates to the concept that the system consists of di�erent components, it was
categorized as \ white-box / st ructure" .

Another example is that of the third row: [Recursion j EXISTENCE]. The exis-
tence of recursive funct ion calls is clearly related to the implementat ion level,
and because it refers to the behavior of the code, it was categorized as \ imple-
mentat ion / behavior" .

These two examples clearly show that the categorizat ion is suitable for the
communicat ion of facts. The white-box facts, which would be communicated to
software architects, contain informat ion on architectural issues (in this case, dis-
t ribut ion). The implementat ion facts, which would beused for coding-guidelines,
would express rules for developers, in this case the use of recursive funct ions
would be forbidden.

Discussion In Tab. 2 the results of the categorizat ion are visualized. It can be
seen that most of the ent it ies are situated on the implementat ion level. However,
this result is not surprising taking into account that the model was built using

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

44



Table 1: Examples of the TUM maintainability model
Ent i t y A t t r ibut es and D escr ip t ion C at egor y

dist ribut ion existence: \ Does the system have dis-
t ributed parts?"

White-box / St ructure

boolean expression
accessibi li ty: \ Within a boolean expres-

sion, no assignments should
be made."

Impl. / St ructure

completeness: \ Boolean expressions have
to be completely bracketed."

recursion existence: \ Are there recursive func-
t ion calls?"

Impl. / Behavior

runt ime-checks existence: \ Does the language provide
runt ime checks, e.g. for ar-
ray bounds?"

Impl. / Behavior

design-decisions
existence: \ Are design-decisions docu-

mented?"
Documentat ion / System

completeness: \ Is the documentat ion of
design-decisions complete?"

Table 2: Categorizat ion of TUM maintainability model
(a) Software system ent it ies

St ructure Behavior Data / Iface
Black-Box 1 0 0
White-Box 3 1 0
Implementat ion 89 11 9

(b) Documentat ion ent it ies

Type #
User Documentat ion 0
System Documentat ion 28

coding guidelines and stat ic code analysis tools. These sources of informat ion
typically refer to the source code and not to high-level concepts of software
systems. It has to be noted that also architectural issues are hardly present
in this model. The ent it ies categorized as system documentat ion, however, are
available in a signi�cant number.

5 Case St udy: SA P Secur it y Requirement s

In this case study, the SAP Product Standard [12] for security was examined
with respect to the de�ned categorizat ion scheme. In a �rst step, all the qual-
ity requirements contained in the Product Standard were t ransferred into the
proposed ABQM structure. In total, 205 di�erent requirements were analyzed
and modeled. To model the act ivity hierarchy, we used the scheme proposed by
Wagner et al. [4]. The constructed ent ity types were categorized according to the
de�nit ions above. The total number of categorized ent it ies was 121. The results
are shown in Tab. 3. Note that more than one requirement may refer to a speci�c

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

45



ent ity and that requirements referring to the same ent ity may do so at di�erent
abst ract ion levels.

For example the ent ity password can refer to the concept that a secret phrase
is used for authorizat ion as well as to the source code variable for storing the
password st ring and also to it s value. One can easily imagine corresponding
requirements: (1) \ sensit ive data should be protected by a password" , (2) \ the
memory storing a password has to be overwrit ten after use" , and (3) \ a password
may never be printed in clear text to log �les" .

In these cases the same ent ity was counted once for each pair of abst ract ion
level/ concept . This explains that the sum of all ent ries in Tab. 3 is 166 instead
of 121.

Discussion As seen above, some requirements may refer to the same ent ity
at di�erent abst ract ion levels or concepts. This shows that it was not always
possible during the modeling process to deduce ent it ies from requirements in
such a way, that they could be uniquely categorized afterwards.

To validate our approach, categorizat ion of requirements and categorizat ion
of ent it ies should yield similar dist ribut ions of results. This can be seen by com-
paring Tab. 3 and Tab. 4, the lat ter summarizing the categorizat ion results of
the original requirements.

Generally, the quest ion arises whether it makes sense to classify the ent it ies
in comparison to classifying the single requirements. Obviously this is the case, if
the number of requirements is signi�cant ly higher then the number of result ing
ent it ies (including facts and descript ions). In other cases, it may seem to be
the easier way to just classify the requirements. However, having an ABQM-
like st ructured quality model o�ers several addit ional bene�ts, as described in
sect ion 2. Whether these just ify the ext ra e�ort of t ransferring the requirements
into the quality model depends on the object ive and the type of analysis that is
intended to be conducted with the quality model.

6 D iscussion & Conclusion

In this paper we presented a method for categorizing software quality pat terns,
which are modeled using an act ivity-based quality model. The categorizat ion
is based on software modeling concepts and on di�erent abst ract ion levels used

Table 3: SAP model ent it ies
(a) System ent it ies

St ructure Behavior Data / Iface
Black-Box 15 23 27
White-Box 13 26 22
Implementat ion 20 1 1

(b) Documentat ion ent it ies

Type #
User Documentat ion 7
System Documentat ion 11

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

46



Table 4: SAP requirements

(a) System requirements

St ructure Behavior Data / Iface
Black-Box 16 36 32
White-Box 16 37 24
Implementat ion 22 1 1

(b) Documentat ion require-
ments

Type #
User Documentat ion 7
System Documentat ion 13

herein. Thepat ternsof thedi�erent categoriescould besuited for communicat ing
the pat terns to di�erent organizat ional roles or to designate responsible persons
for elicit ing and maintaining the pat terns.

The categorizat ion scheme was evaluated in two case studies. The �rst case
study relied on an already exist ing model that was constructed using coding
guidelines and evaluat ion rules of stat ic code analysis tools. In the second case
study a real-world requirements list was modeled and then categorized.

These case studies showed that the categorizat ion scheme is applicable to
real-world models. In the second case study we can see that the number of
ent it ies in each category isquiteevenly dist ributed with the tendency that higher
abst ract ion levels are more present . Thus we conclude that the categorizat ion
scheme does actually de�ne categories that are present in real documents.

By comparing the two case studies, we can see that the nature of the mod-
els is st rongly re�ected in the dist ribut ion of the category sizes. In the second
case study a generic requirements list was modeled that contained very di�erent
requirements. This is re�ected by the equal dist ribut ion of the category sizes.
However, in the�rst case study coding guidelines and metrics of stat ic code anal-
ysis tools were modeled, which resulted in ent it ies that were most ly categorized
as referring to implementat ion st ructure.

Moreover, the categorizat ion of the model promoted a deeper understanding
of the model itself. During the categorizat ion the modeler had to think about the
exact meaning of the ent it ies. In the quality model that meaning was often not
explicit ly documented. Therefore, during the categorizat ion it was discovered
that some ent it ies were used ambiguously in the quality model. This de�ciency
was then corrected by split t ing the ent ity in two ent it ies, in order to re�ect
the two di�erent meanings. In summary, the categorizat ion also contributed to
enhance the quality of the quality model itself.

A possible problem during categorizat ion is the decision where to place spe-
ci�c concepts. Since all concepts are eventually implemented as source code,
there appears the general tendency to classify all as implementat ion level. The
categorizat ion scheme must be applied in such a way that the pat terns are clas-
si�ed at the highest possible abst ract ion level. If a pat tern describes user-visible
funct ionality, it has to be classi�ed as black-box, even though the funct ionality
it self is implemented in source code. If a pat tern describes an implementat ion
detail of one speci�c programming language, it is clearly related to the imple-

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

47



mentat ion level, because users and even software architects are not concerned
with this detail.

In our future research we will focus on how the categorizat ion scheme can
be used to improve both communicat ion and maintenance of software quality
pat terns. For the communicat ion, it is possible to communicate the ent it ies of
di�erent abst ract ion levels to di�erent organizat ional roles. Implementat ion pat-
terns are typically relevant for developers and can be used to generate guidelines,
while the white-box pat terns handle architectural issues and are therefore rele-
vant for software architects. An adequately classi�ed quality model can be used
to integrate quality knowledge into the tools that are cent ral to these organiza-
t ional roles, e.g. the programming environment for the developer. Furthermore,
the categorizat ion scheme could be used to �nd adequate roles to maintain ex-
ist ing software quality pat terns. Black-box pat terns are mainly concerned with
high-level concepts, which are primarily elicited and handled in requirements
engineering. For the maintenance of adequate white-box pat terns software ar-
chitects are most probably the right group, while implementat ion pat terns have
to be developed by experts of programming languages. In future research these
applicat ionsof thecategorizat ion schemehave to beempirically evaluated in case
studies to prove their feasibility and usefulness. In addit ion, this evauat ion may
lead to a re�nement of the categorizat ion granularity, should we �nd evidence
that a higher level of detail will raise its pract ical value.

References

1. Houdek, F., Kempter, H.: Quality pat terns| an approach to packaging software en-
gineering experience. In: SSR '97: Proceedings of the 1997 symposium on Software
reusability, New York, NY, USA, ACM (1997) 81{ 88

2. Dromey, G.R.: A model for software product quality. IEEE Transact ions on
Software Engineering 21(2) (1995) 146{ 162

3. Deissenboeck, F., Stefan Wagner, Pizka, M., Teuchert , S., Girard, J.F.: An act ivity-
based quality model for maintainability. In: Proceedings of the 23rd Internat ional
Conference on Software Maintenance (ICSM 2007), IEEE Computer Society (2007)

4. Wagner, S., Mendez Fernandez, D., Islam, S., Lochmann, K .: A security require-
ments approach for web systems. In: Workshop Quality Assessment in Web (QAW
2009). (2009)

5. Wagner, S., Deissenboeck, F., Winter, S.: Managing quality requirements using
act ivity-based quality models. In: Proc. 6th Internat ional Workshop on Software
quality (WoSQ'08), ACM Press (2008) 29{ 34

6. Boehm, W.B.: Characterist ics of Software Quality. North-Holland (1978)
7. McCall, A.J., Richards, K .P., Walters, F.G.: Factors in Software Quality. NTIS

(1977)
8. Broy, M., Deissenboeck, F., Pizka, M.: Demyst ifying maintainability. In: Proceed-

ings of the 4th Workshop on Software Quality, ACM Press (2006)
9. Winter, S., Wagner, S., Deissenboeck, F.: A comprehensive model of usability. In:

Proceedings of Engineering Interact ive Systems. LNCS, Springer (2007)
10. Sch�atz, B., Pretschner, A., Huber, F., Philipps, J.: Model-based development of

embedded systems. In: Proc. Workshop on Advances in Object -Oriented Informa-
t ion Systems. LNCS. Springer-Verlag (2002) 331{ 336

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

48



11. Broy, M., Feilkas, M., Gr�unbauer, J., Gruler, A., Harhurin, A., Hartmann, J.,
Penzenstadler, B., Sch�atz, B., Wild, D.: Umfassendes Architekturmodell f�ur das
Engineering eingebet teter Software-intensiver Systeme. Technical Report T UM-
I0816, T U M�unchen (2008)

12. Wroblewski, M.: Compliance test ing of non-funct ional requirements at SAP. In:
Quality Engineered Software and Test ing Conference (QUEST'08). (2008)

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

49


