3. Workshop zur Software-Qualitatsmodellierung und -bewertung

Categorization of Software Quality Patterns’

Klaus Lochmann?, Stefan Wagner!, Andreas Goeb?, Dominik Kirchler?

! Technische Universitat Munchen 2 SAP Research
Garching, Germany Darmstadt, Germany
flochmann, wagnerstg@n.tum.de fandreas.goeb, dominik.kirchlerg@sap.com

Abstract. In software systems recurring patterns are often observed
and have been collected and documented in dilerent forms, as for ex-
amplein development guidelines. T hese well-known patterns are utilized
to support design decisions or to automatically detect Caws in software
systems. For the most part, these patterns are related to software qual-
ity issues and can also be be referred to as software quality patterns.
These quality patterns have to be communicated to the various roles
contributing to the development of software, e.g., to software architects
or developers. Hence, a comprehensive scheme to categorize the various
types of patternsis needed to support e“ective communication. The cat-
egories should be shaped so that each category can be communicated to
a single organizational role in a company. Since each pattern refersto a
specilc concept of the software system, a categorization based on sys-
tem modeling concepts is used. The presented categorization scheme is
grounded on activity-based quality models that are already used to col-
lect dillerent patternsrelated tothe quality of software systems. Based on
two case studies the applicability of the categorization scheme is shown.
Real-world models were categorized using the scheme and the resulting
distribution of entities within the dillerent classes is discussed.

1 Introduction

In practical software engineering, a major challenge is to develop software of
high quality. Professional developers use proven best practices and experiences
to tackle it. In order to pass these best practices to inexperienced developers
they document recurring patterns. Sources for such patterns are, for example,
coding guidelines, style guides, bug patterns, and architectural patterns. Style
guides for source code improve its readability by applying a consistent format.
Bug patterns are used to detect and classify defects in software.

The term quality pattern as used by Houdek and Kempter [1] describes a
structured way to document and reuse quality-related experience. The authors
delne a framework based on Goal/ Question/ Metric-Approach that contains an
abstract, a problem statement in a speciled context as well as a solution. Our
understanding of the term quality pattern is more general. All product-related

? Thiswork haspartially been supported by the German Federal Ministry of Education
and Research (BMBF) in the project QuaMoCo (01 IS 08023B/ D).

40

3. Workshop zur Software-Qualitatsmodellierung und -bewertung

patterns occuring in software that are related to quality are seen as quality
patterns by us. The exact de nition of the term is based on quality models and
will be given in section 2.

Patterns and their relation to quality attributes of a system are represented
in quality models. The [rst quality model that distinguishes between quality
attributes and quality-inluencing properties of a system is that of Dromey [2].
In this paper the approach of Deissenboeck et al. [3], which extends Dromey's
ideas, is used because it sets development activities in relation to properties
of the system. These properties are essentially describing quality patterns. In
recent work, such quality models are used to delne how to achieve quality in a
software system [4,5]. All these quality models focus on software product quality
by del ning conceptsrelated to the software product itself as opposed to process-
related concepts.

Problem. Toellciently communicatetheinformation contained in quality models
a categorization is needed that supports their communication. Many existing
qguality models provide a categorization according to quality attributes. Yet,
especially for communicating the patterns to dillerent audiences and roles, this
categorization is not optimal, because it does not divide the quality patterns
alongside the needs of these organizational roles. Furthermore, quality modelsin
practice tend to be large, containing hundereds of patterns. The handling and
communicating of such models posed additional challenges.

Contribution. In this paper we propose an approach for classifying quality pat-
terns according to abstraction levels of the system they are referring to. Each
abstraction level is concerned with diCerent conceptsthat are relevant for diler-
ent development steps. Since the dilerent development steps are performed by
dilerent roles within a company, corresponding quality patterns can be commu-
nicated to these roles.

2 Activity-Based Quality Models

Quality models have been used to describe the concept of software quality for
decades [6,7]. Several authors argue that facts describing the system have to be
separated from quality aspects. Dromey [2], for example, introduces a quality
model that distinguishes between quality-carrying properties and quality at-
tributes.

| Attribute | | Impact |

* 1

*

H l Fact Activity ;—‘
1 *

1

Fig. 1: Meta-Model: Activity-Based Quality Model

41

3. Workshop zur Software-Qualitatsmodellierung und -bewertung

Existing quality models often use high-level \ -ilities" for del ning quality on a
very coarse level, which isreported to be hard to operationalize [3]. To overcome
this shortcoming, activity-based quality models (ABQM) were proposed [8]. The
ideathereisto break down quality in detailed facts and their in[uence on activ-
ities performed on the system. An example for a fact would be \ unambigousness
of source code", which has an inluence on the activity \ code reading".

An ABQM is based on a de_ned meta-model (see Fig. 1) whose elements are
described in the following. The beforementioned facts are modeled as a compo-
sition of entities and attributes. The entities describe a hierarchically structured
decomposition of the system and corresponding documents. Entities can be tech-
nical concepts of programming languages such as source code expressions but also
more abstract concepts such as inheritance structure. An entity that is character-
ized by an Attribute is called Fact, e.g., [Source Codej UNAMBIGUOUSNESS] denotes
unambiguous source code. Also the activities are organized in a hierarchy. A top-
level activity maintenance has sub-activities such as code reading, modication, and
testing. The impacts del ne a relationsship between facts and activities. They de-
scribe which fact has an in[uence on an activity. For denoting the previous exam-
ple, thefollowing notation isused: [Source Codej unamBIGousNEss] [l [Code Reading].

ABQMs have been used for modeling maintainability [3], usability [9], and
security [4]. In these case studies existing knowledge in form of guidelines, check-
lists, standards, etc. has been modeled as an ABQM. The occuring patterns
found in these documents are modeled as facts in the ABQM, whereby the im-
pact on activities gives a justilcation for the relevance of the fact.

3 Categorization of Entities

Dueto thefact the entities of the ABQM arereferring to very dilJerent concepts
and abstraction levels of a system and the fact that real quality models are very
large (e.g., 142 entities in [3]), the task of communicating the signilcant parts
of the model to the appropriate people at the right phase during development
is challenging. Since the activities are more related to the concerns of stake-
holders, they are not suited as a means for categorization regarding roles in a
company. A software architect, for example, has to take both maintainability
and performance issues into regard.

In the following we propose an approach to structure the entities in a way
that is suitable for the goals described above. The most general way of catego-
rization isto distinguish between entities referring to the software system itself,
and those referring to documents secondarily produced, like documentation (see
Fig. 2a). Although ABQMs are also used to model non-system entities, like the
development environment or pocess characteristics, we focus on product related
entities, because they make up a strong majority of entites in our case studies.
We distinguish between system documentation that describestheinner structure
and working of the system, and the user documentation like operator manuals
etc. Since all entities referring to the software system in some way represent a

42

3. Workshop zur Software-Qualitatsmodellierung und -bewertung

model of it, we will use existing concepts from existing modeling techniques to
structure them.

According to Schatz et al. [10] we distinguish between horizontal and ver-
tical abstraction (see Fig. 2b). Horizontal abstraction introduces a separation
of concerns with the distinction between structure, behavior, and data. Vertical
abstraction introduces levels of abstraction, whereby the lower the level of ab-
straction, the more details are visible. An example for levels of abstraction are
black-box description, white-box description, and the technical implementation
of a system.

For each abstraction level research has been conducted and sophisticated
models are available that we exploit here. Broy et al. [11] describe the architec-
ture of embedded software-intensive systems on dilerent levels of abstraction.
In this work we use the concepts depicted in Fig. 2b and described as follows.

Black-box level On this level of abstraction the inner working of the system is
omitted. Therefore, only the interface of the system to its environment and the
user-visible behavior are described.

{ Structural Concepts describethe structure of the system. Since, on the black-
box level theinternal structureisnot visible, only externally visible structure
is described here.

{ Behavioral Concepts describe the behavior of the system as seen at the sys-
tem boundary by its environment or rather the user.

{ Interface/ Data Concepts del hethe syntactic interface of the system and the
data typesthat are used by it.

White-box level On this level of abstraction the system is described as a white
box, i.e., the internal components of the system are visible. This level is also
called logical architecture.

{ Structural Concepts on thislevel are the components the system consists of,
and the way in which the components are connected to each other.

Horizontal Abstraction

Entites
f [

[I I T

} 21 } = } S

o1 | = |

(a) Horizontal Abstraction (b) P2l g1l Ji
. . I =2 11 a1l =

Vertical Abstraction D I 8 |

! 1 1! I

c

S HPE R
Software System S | Black-Box Level 0 0, e I
% ;:::::::::::::::ﬂ‘i:::‘Lj‘::j‘:}:::‘r—‘
System Documentation| 2 } White-Box Level @11 @1 @11
O [I B I

¢ User Documentation Q o F==FF ="~
S ’ I I Il I
Documentation £ | ImplementationLevel 1 @ | | @ || @ ||
O I P T A

> [A D 2

Fig. 2: Categorization of Entities

43

3. Workshop zur Software-Qualitatsmodellierung und -bewertung

{ Behavioral Concepts on this level del ne the behavior of each component.
{ Interface/ Data Concepts describe the interfaces of the components.

Implementation level On this level, the actual implementation of the system is
described. It consists of both software and hardware elements.

{ Structural Concepts describe the structure of the software, e.g., the source-
code, conlguration [les, and hardware, e.g., CPUs, memory, and bus sys-
tems.

{ Behavioral Concepts describe the behavior of the elements on this level.
T hese can betiming constraints of the hardware but also behavioral concepts
of the programming language as for example pointers and garbage collection.

{ Data Concepts describe the data structures used on the source code and
hardware level.

4 Case Study: TUM M aintainability M odel

At Technische Universitat Munchen (TUM) an ABQM for maintainability was
developed in multiple case studies [3,8]. This quality model was used for the
generation of guidelines as well as for the evaluation of the results of static code
analysis tools. The model consists of 152 entities, 205 facts, and 30 activities.
It has to be noted, that some entities are used for structuring and are actually
not referring to system concepts at all. These entities typically have no facts
associated with them and were omitted in the analysis. There were 10 entities
of this kind.

Example In Tab. 1 examples of the TUM maintainability model are shown. In
the [rst row of the table the fact [DistributionjExisTENCE] is delned. This fact just
expresses whether there are distributed parts within the system or not. Because
it relatesto the concept that the system consists of dillerent components, it was
categorized as \white-box / structure".

Another example is that of the third row: [RecursionjExisTENCE]. The exis-
tence of recursive function calls is clearly related to the implementation level,
and because it refers to the behavior of the code, it was categorized as \imple-
mentation / behavior".

These two examples clearly show that the categorization is suitable for the
communication of facts. The white-box facts, which would be communicated to
software architects, contain information on architectural issues (in this case, dis-
tribution). Theimplementation facts, which would be used for coding-guidelines,
would express rules for developers, in this case the use of recursive functions
would be forbidden.

Discussion In Tab. 2 the results of the categorization are visualized. It can be

seen that most of the entities are situated on theimplementation level. However,
this result is not surprising taking into account that the model was built using

44

3. Workshop zur Software-Qualitatsmodellierung und -bewertung

Table 1: Examples of the TUM maintainability model

Entity Attributes and Description Category

distribution existence:|\ Does the system have dis-| White-box / Structure
tributed parts?”

accessibility:[\Within a boolean expres-
sion, no assignments should
be made."

completeness: |\ Boolean expressions have
to be completely bracketed."

boolean_expression Impl. / Structure

recursion existence:|\ Are there recursive func- Impl. / Behavior
tion calls?"
runtime-checks existence:|\ Does the language provide Impl. / Behavior

runtime checks, e.g. for ar-
ray bounds?"

existence:|\ Are design-decisions docu-
mented?"

completeness:|\Is the documentation of
design-decisions complete?"

design-decisions Documentation / System

Table 2: Categorization of TUM maintainability model

(a) Software system entities (b) Documentation entities
Structure Behavior Data/ Iface Type #
Black-Box 1 0 0 User Documentation 0
W hite-Box 3 1 0 System Documentation 28
Implementation 89 11 9

coding guidelines and static code analysis tools. These sources of information
typically refer to the source code and not to high-level concepts of software
systems. It has to be noted that also architectural issues are hardly present
in this model. The entities categorized as system documentation, however, are
available in a signil cant number.

5 Case Study: SAP Security Requirements

In this case study, the SAP Product Standard [12] for security was examined
with respect to the delned categorization scheme. In a [rst step, all the qual-
ity requirements contained in the Product Standard were transferred into the
proposed ABQM structure. In total, 205 dilJerent requirements were analyzed
and modeled. To model the activity hierarchy, we used the scheme proposed by
Wagner et al. [4]. The constructed entity types were categorized according to the
delnitions above. The total number of categorized entities was 121. The results
areshown in Tab. 3. Note that more than onerequirement may refer to a specilc

45

3. Workshop zur Software-Qualitatsmodellierung und -bewertung

entity and that requirements referring to the same entity may do so at dillerent
abstraction levels.

For example the entity password can refer to the concept that a secret phrase
is used for authorization as well as to the source code variable for storing the
password string and also to its value. One can easily imagine corresponding
requirements: (1) \ sensitive data should be protected by a password", (2) \the
memory storing a password hasto be overwritten after use", and (3) \ a password
may never be printed in clear text to log [les".

In these cases the same entity was counted once for each pair of abstraction
level/ concept. This explains that the sum of all entriesin Tab. 3 is 166 instead
of 121.

Discussion As seen above, some requirements may refer to the same entity
at dilerent abstraction levels or concepts. This shows that it was not always
possible during the modeling process to deduce entities from requirements in
such a way, that they could be uniquely categorized afterwards.

To validate our approach, categorization of requirements and categorization
of entities should yield similar distributions of results. This can be seen by com-
paring Tab. 3 and Tab. 4, the latter summarizing the categorization results of
the original requirements.

Generally, the question arises whether it makes sense to classify the entities
in comparison to classifying the single requirements. Obviously thisisthe case, if
the number of requirements is signil_cantly higher then the number of resulting
entities (including facts and descriptions). In other cases, it may seem to be
the easier way to just classify the requirements. However, having an ABQM-
like structured quality model olers several additional benelts, as described in
section 2. Whether these justify the extra elort of transferring the requirements
into the quality model depends on the objective and the type of analysis that is
intended to be conducted with the quality model.

6 Discussion & Conclusion

In this paper we presented a method for categorizing software quality patterns,
which are modeled using an activity-based quality model. The categorization
is based on software modeling concepts and on dilerent abstraction levels used

Table 3: SAP model entities

(a) System entities (b) Documentation entities
Structure Behavior Data/ Iface Type #
Black-Box 15 23 27 User Documentation 7
W hite-Box 13 26 22 System Documentation 11
Implementation 20 1 1

46

3. Workshop zur Software-Qualitatsmodellierung und -bewertung

Table 4: SAP requirements
(b) Documentation require-

(a) System requirements ments
Structure Behavior Data/ Iface Type #
Black-Box 16 36 32 User Documentation 7
W hite-Box 16 37 24 System Documentation 13
Implementation 22 1 1

herein. The patternsof thedilerent categories could be suited for communicating
the patternsto dilerent organizational roles or to designate responsible persons
for eliciting and maintaining the patterns.

The categorization scheme was evaluated in two case studies. The [rst case
study relied on an already existing model that was constructed using coding
guidelines and evaluation rules of static code analysis tools. In the second case
study a real-world requirements list was modeled and then categorized.

These case studies showed that the categorization scheme is applicable to
real-world models. In the second case study we can see that the number of
entitiesin each category isquite evenly distributed with thetendency that higher
abstraction levels are more present. Thus we conclude that the categorization
scheme does actually delne categories that are present in real documents.

By comparing the two case studies, we can see that the nature of the mod-
els is strongly relected in the distribution of the category sizes. In the second
case study a generic requirements list was modeled that contained very dilJerent
requirements. This is relected by the equal distribution of the category sizes.
However, in the [rst case study coding guidelines and metrics of static code anal-
ysis tools were modeled, which resulted in entities that were mostly categorized
as referring to implementation structure.

Moreover, the categorization of the model promoted a deeper understanding
of the model itself. During the categorization the modeler had to think about the
exact meaning of the entities. In the quality model that meaning was often not
explicitly documented. Therefore, during the categorization it was discovered
that some entities were used ambiguously in the quality modd. This delciency
was then corrected by splitting the entity in two entities, in order to reliect
the two dilerent meanings. In summary, the categorization also contributed to
enhance the quality of the quality model itself.

A possible problem during categorization is the decision where to place spe-
cilc concepts. Since all concepts are eventually implemented as source code,
there appears the general tendency to classify all as implementation level. The
categorization scheme must be applied in such a way that the patterns are clas-
siled at the highest possible abstraction level. If a pattern describes user-visible
functionality, it has to be classi[ed as black-box, even though the functionality
itself is implemented in source code. If a pattern describes an implementation
detail of one specil c programming language, it is clearly related to the imple-

a7

3. Workshop zur Software-Qualitatsmodellierung und -bewertung

mentation level, because users and even software architects are not concerned
with this detail.

In our future research we will focus on how the categorization scheme can
be used to improve both communication and maintenance of software quality
patterns. For the communication, it is possible to communicate the entities of
dillerent abstraction levelsto dilerent organizational roles. Implementation pat-
ternsaretypically relevant for developers and can be used to generate guidelines,
while the white-box patterns handle architectural issues and are therefore rele-
vant for software architects. An adequately classi(ed quality model can be used
to integrate quality knowledge into the tools that are central to these organiza-
tional roles, e.g. the programming environment for the developer. Furthermore,
the categorization scheme could be used to [nd adequate roles to maintain ex-
isting software quality patterns. Black-box patterns are mainly concerned with
high-level concepts, which are primarily elicited and handled in requirements
engineering. For the maintenance of adequate white-box patterns software ar-
chitects are most probably the right group, while implementation patterns have
to be developed by experts of programming languages. In future research these
applications of the categorization scheme have to be empirically evaluated in case
studies to prove their feasibility and usefulness. In addition, this evauation may
lead to a re_nement of the categorization granularity, should we [nd evidence
that a higher level of detail will raise its practical value.

References

1. Houdek, F., Kempter, H.: Quality patterns| an approach to packaging software en-
gineering experience. In: SSR '97: Proceedings of the 1997 symposium on Software
reusability, New York, NY, USA, ACM (1997) 81{88

2. Dromey, G.R.: A model for software product quality. |IEEE Transactions on
Software Engineering 21(2) (1995) 146{162

3. Deissenboeck, F., Stefan Wagner, Pizka, M., Teuchert, S., Girard, J.F.: An activity-
based quality model for maintainability. In: Proceedings of the 23rd International
Conference on Software Maintenance (ICSM 2007), IEEE Computer Society (2007)

4. Wagner, S., Mendez Fernandez, D., Islam, S., Lochmann, K.: A security require-
ments approach for web systems. In: Workshop Quality Assessment in Web (QAW
2009). (2009)

5. Wagner, S., Deissenboeck, F., Winter, S.: Managing quality requirements using
activity-based quality models. In: Proc. 6th International Workshop on Software
quality (WoSQ'08), ACM Press (2008) 29{34

6. Boehm, W.B.: Characteristics of Software Quality. North-Holland (1978)

7. McCall, A.J., Richards, K.P., Walters, F.G.: Factors in Software Quality. NTIS
(1977)

8. Broy, M., Deissenboeck, F., Pizka, M.: Demystifying maintainability. In: Proceed-
ings of the 4th Workshop on Software Quality, ACM Press (2006)

9. Winter, S., Wagner, S., Deissenboeck, F.: A comprehensive model of usability. In:
Proceedings of Engineering Interactive Systems. LNCS, Springer (2007)

10. Schatz, B., Pretschner, A., Huber, F., Philipps, J.: Model-based development of
embedded systems. In: Proc. Workshop on Advances in Object-Oriented Informa-
tion Systems. LNCS. Springer-Verlag (2002) 331{336

48

3. Workshop zur Software-Qualitatsmodellierung und -bewertung

11. Broy, M., Feilkas, M., Grunbauer, J., Gruler, A., Harhurin, A., Hartmann, J.,
Penzenstadler, B., Schatz, B., Wild, D.: Umfassendes Architekturmodell fur das
Engineering eingebetteter Software-intensiver Systeme. Technical Report TUM-
10816, TU Munchen (2008)

12. Wroblewski, M.: Compliance testing of non-functional requirements at SAP. In:
Quality Engineered Software and Testing Conference (QUEST'08). (2008)

49

