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ABSTRACT
In order to assess software quality by software metrics, usually,
thresholds for metric values are needed. A common problem is to
define reasonable threshold values. One possible solution is to use
a benchmarking approach: the threshold value for a metric is cal-
culated based on the metric values of a set of systems, which are
called benchmarking base. A relevant question is, how the used
benchmarking base influences the result of the software quality as-
sessment. Based on the quality assessment approach of Quamoco,
we conduct a series of experiments, using different benchmarking
bases. For each benchmarking base a quality assessment of a se-
ries of test systems is conducted. We analyze the whether the
quality assessment results of the test systems are concordant for
different benchmarking bases. The main findings are: (1) The
bigger the benchmarking base, the less divergent are the rank-
ings, and the less is the variance of the results. (2) The size of the
systems contained within a benchmarking base does not influence
the results, i.e. a benchmarking base containing small systems
works equally well for small and large systems, and vice versa.
These results show that benchmarking is a feasible approach for
determining threshold values.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics; D.2.9 [Software En-
gineering]: Management—Software Quality Assurance (SQA)

General Terms
Measurement, Experimentation

Keywords
Quality model, Metric, Benchmarking

1. INTRODUCTION
In order to define and assess the quality of software systems,
quality models have been introduced. Late approaches, such as
Quamoco [14, 22] and Squale [16], define quality attributes, their
operationalization by metrics and tools, and sophisticated assess-
ment and aggregation approaches. Based on measurement data
they produce an overall quality statement of a software system.
In order to get to this overall quality statement, the quality mod-
els describe the relation of single metrics to quality attributes.
Furthermore, it is necessary to map a value obtained for a metric
to a utility w.r.t. a quality attribute, i.e. evaluating if the metric
value is “good” or “bad”. The mapping is called a utility function.

In our approach Quamoco we use partwise linear functions for
specifing the utility function. The decision whether the linear
function must be increasing or decreasing is taken by an expert.
For instance, the expert decides that the higher the values of the

metric “clone coverage”, the lower the result regarding maintain-
ability must get.

The main challenge of this approach is to define the exact nu-
merical parameters of the utility function. A common solution to
this problem is to define the thresholds based on a benchmarking
approach [12]. The basic principle of benchmarking is to collect
a measure for a (large) number of systems (called benchmarking
base) and compare the measured value of the system under as-
sessment to these values. This allows us to decide if the system
is better, equally good, or worse compared to the benchmarking
base.

The Quamoco approach uses the benchmarking base to statisti-
cally determine parameters for the utility functions. In essence,
the parameters of the linear function are chosen so that a system
with a metric value lower than that of all benchmarking systems
evaluates to a utility of 0, a system with a metric value higher
than that of all benchmarking system evaluates to a utility of 1.

The evaluations of the Quamoco approach in [22] found that the
quality assessment results matches the expectations of experts for
the corresponding systems. Furthermore, the assessment is able to
detect quality improvements of a software system across different
versions. Nonetheless, the impact of the chosen benchmarking
approach on the quality assessment results remains an open and
relevant question.

Ideally, we would use all existing software systems as a bench-
marking base. This way, the generalizability of the resulting
quality assessment would be maximized. However, for practi-
cal reasons, we must use available samples of software systems
as benchmarking bases. Obviously, different benchmarking bases,
lead to different quality assessment results.

For being able to produce generalizable quality statements
nonetheless, we would like to find characteristics for satisfactory
benchmarking bases. Two satisfactory benchmarking bases used
for assessing the same set of systems should lead to the same
assessment results.

We will test the following two characteristics of benchmarking
bases: (1) one characteristic that arguably could have an influence
on the quality assessment results is the size of the benchmarking
base (i.e. the number of systems contained in the benchmarking
base); (2) another characteristic with a possible influence on the
quality assessment results is the size of the systems contained in
the benchmarking base. For assessing rather large software sys-
tems, benchmarking bases containing large systems could produce
better results.



Other criteria, such as successful vs. not successful systems, are
out-of-scope for this article. Furthermore, our investigations are
limited to open source systems written in the programming lan-
guage Java.

2. RELATED WORK
To the best of our knowledge there is only one approach directly
concerned with benchmarking w.r.t. software code quality. Gru-
ber et al. [7, 6] describe an approach for assessing software quality
by a benchmarking approach. They provide a case study with a
comprehensive evaluation of the validity of the assessment results
using their approach. However, they do not investigate the im-
pacts of different benchmarking bases.

Similar questions to the ones investigated in this paper arise in
the area of metric-based approaches for quality assessments and
software fault prediction, discussed in the following.

Metric-based Quality Assessments. Lanza and Marinescu [12]
describe two approaches for finding threshold values for metrics:
(a) statistical information and (b) common knowledge. The for-
mer essentially describes a benchmarking approach like ours, but
without taking a detailed look at the influence of different bench-
marking bases. The latter refers to thresholds determined by
experts, based on a well-justified explanation.

The quality model of Squale [20] mainly uses expert-based thresh-
old values. For classical size and complexity metrics (e.g. size of
methods, number of methods per class, nesting depth of meth-
ods) an expert defines a function mapping to the interval [0, 3], 0
meaning a bad result and 3 a good result. For instance, the size
of methods is mapped to this scale by the function 2

70−SLOC
21 . Obvi-

ously, the values 70 and 21 are based on expert knowledge about
the sizes of methods. For rule-based static code analysis metrics a
similar transformation is used, essentially being based on a defect
density metric: a

w×numberofdefects
SLOC . The constant a and the weight w

are chosen by the expert. In contrast, in the Quamoco approach
such parameters of utility functions are never set by experts, but
only by the benchmarking approach.

Other articles (e.g. [5, 15]) mention the challenge of finding thresh-
olds, but without making a contribution to this topic.

Fault Prediction. In software fault prediction [8] statistical mod-
els are built that capture the relation of different metrics to faults
in the field. For a set of systems, for which both the metric values
and the fault numbers are known, either statistical models (such
as logistic regression) or machine learning models (such as neu-
ral networks) are applied. Determining utility functions based on
such techniques is not possible in our quality model, because the
“target quality” is not known.

However, like in our approach, also for statistical models and for
machine learning models, the number of systems used for “learn-
ing” the predictor is important.

3. BACKGROUND: THE QUAMOCO APPROACH
In the research project Quamoco1 a quality model for software
products and accompanying methods for applying the quality
model in practice have been developed. First, an explicit meta-
model for quality models has been developed [22, 11, 14], which

1http://www.quamoco.de/

[Complexity | Source code construct]

[Complexity | Method]

[Complexity | Concrete method]

[Too many parameters| Concrete method]

[Too long | Concrete method]

[Too deeply nested | Concrete method]

[Analyzability | Product]
‐

[Maintainability| Product]

decomposition
refinement

impact

Legend

Figure 1: Excerpt of the Quality Model

enables the construction of general quality models [13]. Second,
based on the meta-model a “base model” [17] has been developed.
It describes abstract quality attributes and operationalizes them
by concrete measures and tools for Java source code. For con-
structing quality models and for conducting quality assessments,
tool support was built [2]. Using the tool-support, several evalu-
ations were conducted [14, 22]: The evaluation of the Quamoco
approach showed that the quality assessment (1) is able to diver-
sify software systems regarding different quality levels, (2) is in
line with expert-based assessments (3) reflects quality improve-
ments over different versions of a software product.

3.1 Structure of the Quality Model
As suggested in literature (see [4, 3]) the Quamoco quality model
uses a product model of software as a backbone. The product
model describes Entities of which software consists. The enti-
ties are organized like data models, with a specialization (is-a)
and a decomposition relation (part-of ). Typical entities include
Class and Expression, whereby Expression is further refined by
Relational expression and Arithmetical expression, which are in
an is-a relation to Expression.

The main goal of the quality model is to describe properties of
software. In the literature, the term property is defined as an
attribute, which is used to characterize an object. Hence, in our
quality model, we define a Property as an Attribute of an Entity.
In the following we use the notation [attribute|entity ] for proper-
ties.

Typical quality attributes, like known from ISO 25010 [9],
are expressed as properties referring to the entity product.
For instance [Maintainability |Product ] and [Reliability |Product ].
We also describe properties of more specific entities, such as
[Complexity |Method ], or [Correctness|Arithmetical expression].

The Impact relation plays a central role in the quality model.
It describes a qualitative interrelation between properties. More
precisely, an impact specifies that the degree to which an entity
has a property influences the degree to which another entity has
another property. The effect of the influence can be either pos-
itive or negative. If the impact has a positive effect, the degree
to which the entity has the target property is increased if the
entity has the source property; and vice-versa for a negative im-
pact. Impacts are used to describe how specific properties (such
as [Complexity |Method ]) influence general quality attributes (such
as [Maintainability |Product ]).
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Figure 2: Utility Function for a Rule-Based Metric

Quality models built this way usually consist of a large number
of properties characterizing specific entities. These properties are
organized hierarchically using two relations:

1. If a property B refines a property A, it means that B is
more special regarding the entity it characterizes than A.
More precisely, if a property B refines a property A, then
the entity of B must be in a is-a relation to the entity of A.

2. A property can be decomposed into sub-properties by spe-
cializing its attribute, while the entity stays the same.

Figure 1 shows an excerpt of the quality model for Java. It de-
fines the property [Complexity |Source code construct ], describing
that there is a general notion of complexity in source code. This
property is refined for more special entities, such as methods and
classes. In object-oriented programming languages methods can
be further split into abstract and concrete methods. The complex-
ity of concrete methods is than decomposed to more tangible prop-
erties describing the number of parameters, the length, and the
nesting depth of a method. The property [Complexity |Method ]
has a negative influence on the analyzability, because complex
methods demand more effort for being understood by the devel-
oper.

3.2 Quality Assessment Approach
Assessing the quality means determining the degree of satisfaction
of properties in the quality model. The satisfaction of each prop-
erty is evaluated on a scale [0, 1], 0 meaning that the property is
not satisfied, and 1 meaning that the property is fully satisfied.

The principle of the quality assessment approach is to measure
leaf-properties by metrics and then aggregate the values alongside
the property hierarchy. Introducing all the details of the aggre-
gation is out of scope, and can be found in [14]. In the following,
we will only introduce the details regarding the utility functions
and threshold values for metrics.

The main challenge is to derive a value for the satisfaction of a
property by the measurement data of a metric. We will show by
an example how this is done. The normalized metric value for
the FindBugs rule OS OPEN STREAM is “percentage of classes,
which open, but do not close a stream”. This metric is used to

Quality Model

Quality Assessment Tool

Benchmarking 
SystemsTest System

Quality Assessment
of Test System

FindBugs

…

PMD

CloneDetective

Figure 3: Quality Assessment Tool

measure the property [Definition and Usage Consistency |Resource
Handle]. To calculate the degree of satifaction for this property
by the given metric, the mapping function shown in Figure 2 is
used. The property is fully satisfied if the metric is 0, it gets a
satisfaction of 0.5 if 1.64% of the classes have the given problem,
and it is not satisfied if 45.69% or more of the classes have the
given problem.

The three threshold values t1, t2, and t3 for the utility function (0,
1.64 and 45.69 in the example) have been determined using the
benchmarking approach. For each system of the benchmarking
base the normalized metric value has been calculated, resulting
in values x1, . . . , xn. The values of the thresholds are then the
minimum, median, and maximum of the non-outlier values:

t1 = min({x : x ≥ Q25%(x1, . . . , xn)− 1.5 · IQR(x1, . . . , xn)})
t2 = median(x1, . . . , xn)
t3 = max({x : x ≤ Q75%(x1, . . . , xn) + 1.5 · IQR(x1, . . . , xn)})

whereby

Qp denotes the p-percentice
IQR(x1, . . . , xn) denotes the inter-quartile-range:
IQR(x1, . . . , xn) = Q75%(x1, . . . , xn)−Q25%(x1, . . . , xn)

These functions assure that outlier values are ignored; for t1 the
minimum non-outliner value is taken; for t3 the maximum non-
outlier value. For t2 the median of all values is taken.

3.3 Tool Support
For creating quality models conforming to the meta-model a qual-
ity model editor has been developed. This editor enables the
graphical creation and modification of quality models. Based on
the quality assessment framework ConQAT2 a quality assessment
tool for automatically conducting quality assessments based on
the quality model is provided. The tools and the Java quality
model are available online3.

Figure 3 summarizes the usage of the tools for conducting a qual-
ity assessment based on a given quality model and a given bench-
marking base. The quality assessment tool reads a quality model,
sets its threshold values using the benchmarking systems, and

2http://www.conqat.org/
3http://www4.in.tum.de/~lochmann/WoSQ2012/



then calculates the quality assessment of the given test system.
As a result, the degree of satisfaction of all properties of the qual-
ity model are reported. For the case study in this paper, only the
aggregated value for the root-quality attribute [Quality |Product ]
is used. Additionally, ConQAT generates a detailed log file con-
taining warning and error messages for debugging.

4. STUDY DESIGN & PROCEDURE
In this study we conduct quality assessments for a set of test
systems using different benchmarking bases. For the analyses
in this paper, the value aggregated to the root quality attribute
[Quality |Product ] will be used as quality assessment result. The
goal is to investigate the influence of different benchmarking bases
on the quality assessment results.

4.1 Research Questions
The study is aligned according to the following three research
questions:
RQ 1: Do different benchmarking bases of the same size have an

influence on the quality assessment result?
We use different benchmarking bases containing the same
number of systems for conducting quality assessments of the
test systems. We investigate the influence of the benchmark-
ing bases on the assessment results.

RQ 2: Does the size of the benchmarking base have an influence
on the quality assessment results?
We investigate, whether the number of systems contained in a
benchmarking base has an influence on the quality assessment
results of the test systems.

RQ 3: Does the size of the systems used in the benchmarking base
have an influence on the quality assessment results?
A reasonable supposition is that a benchmarking base con-
taining small systems (large systems) is best suited for quality
assessments of small system (large systems). We will investi-
gate whether this assumption holds.

4.2 Study Procedure
The investigation of all three research questions involves the com-
parison of the quality assessment results produced by different
benchmarking bases for their accordance. To derive criteria for
accordance, we discuss ways in which the quality assessment re-
sults may get distorted:

• The ranking of the systems according to the overall quality
[Quality |Product ] may change. For instance, for benchmark-
ing base A, system X may get a better result than system Y,
for benchmarking base B, system Y may get a better result
than system X. Note that the ranking of the systems is in-
dependet from the absolute values the systems get.

• The absolute values of the quality assessments may be
shifted by a certain offset, while their ranking remains the
same. For instance, for benchmarking base A the system X
and Y may get values xA and yA, with xA < yA, for bench-
marking base B they get xB and yB with xB < yB , but with
xA 6= xB and yA 6= yB .

We use the following two criteria for measuring these distortions:

C1: Ranking. For two benchmarking bases A and B, we calcu-
late the ranking of a set of test systems. Then, we calculate the
Spearmans rank correlation coefficient [19] to assess, whether the
rankings are conform or not.

C2: Variance. For a system X and for benchmarking bases
A1, . . . , An, we get values x1, . . . , xn. We calculate the stan-
dard deviation stdev(x1, . . . , xn) to assess how much the values of
one system differ for the used benchmarking bases.

4.2.1 RQ 1 Different Systems
We do a quality assessment for all test systems, with 10 ran-
domly generated benchmarking bases, containing 500 systems (10-
100 kLOC) each.

We calculate the criterion C1 Ranking for each pair of bench-
marking bases. We consider the influence of the benchmarking
base not significant, if all pairs of rankings have a statistically
significant correlation of more than 0.9.

Furthermore, we calculate the criterion C2 Variance for all test
systems. Then, we calculate the minimum, average, and maxi-
mum standard deviation. We consider the influence of the bench-
marking base not significant, if the maximum standard deviation
is below 0.1.

4.2.2 RQ 2 Different Benchmarking Base Sizes
We will use benchmarking bases containing different numbers of
systems, namely 10, 20, 50, 100, 200, 500. For each of these size
classes we randomly generate 5 benchmarking bases out of all
available Java systems between 10 and 100 kLOC. We analyze all
available test systems with each benchmarking base.

First, within each size class, we calculate criterion C1 Ranking for
each pair of rankings. This results in 10 rank correlations for each
of the 6 size classes. We visualize the interrelation of the bench-
marking bases’ size and the conformance of the rankings through
a scatterplot. In order to do a statistical test, we formulate the
following hypothesis:
H10 : There is no correlation between the size of the benchmark-
ing base and the conformance of rankings.
H1A : There is a correlation between the size of the benchmarking
base and the conformance of rankings.
The hypothesis H1 is tested by the Pearson’s product-moment
correlation with a significance level of α = 0.95, i.e. H10 is re-
jected for a p-value less than 0.05.

Second, within each size class, we calculate criterion C2 Variance
for each test system. Due to the high number of values (a value
for each test system per benchmarking base) a scatterplot is not
suited for visualizing the interrelation of benchmarking bases’ size
and variance. We, thus, plot a line diagram with the minimum,
median, and maximum standard deviation for each size class. In
order to do a statistical test, we formulate the following hypoth-
esis:
H20 : There is no correlation between the size of the benchmark-
ing base and the average variance of the results.
H2A : There is a correlation between the size of the benchmarking
base and the average variance of the results.
The hypothesis H2 is tested by the Pearson’s product-moment
correlation with a significance level of α = 0.95, i.e. H20 is re-
jected for a p-value less than 0.05.

4.2.3 RQ 3 Different System Sizes
We use benchmarking bases containing systems of different size
classes: the first class contains 100 systems of sizes between 5 and
10 kLoC, the second one contains 100 systems of sizes between
50 and 150 kLoC. Of each class of benchmarking base, 10 actual
benchmarking bases are generated randomly. The two criteria C1
and C2 are evaluated for two sets of test systems. The first set



of test systems contains 150 systems between 5 and 10 kLoc, the
second contains 150 systems between 50 and 150 kLoc. We com-
pare the average rank correlation coefficient (C1) and the average
standard deviation (C2) for each combination of benchmarking
base class and test system set. This way, we assess whether the
benchmarking base consisting of small systems works better for
the small than for the large test systems; and vice versa for the
benchmarking base consisting of large systems. Due to the low
number of data points, a statistical test of the correlation between
systems’ sizes and the two criteria is not possible.

5. STUDY OBJECTS
In this section, we describe the used quality model and the Java
systems used as benchmarking base and test systems.

5.1 The Quality Model
The used quality model for Java source code is, of course, an
essential part of the study. We already described the structure,
the quality assessment approach and the tool support in Section 3.
Here, we will give more details about the contents of the Java
quality model.

The quality model describes the source code quality of programs
written in Java. It is based on rules of the static code checkers
FindBugs and PMD. Each rule is modeled as a metric for measur-
ing a certain property, resulting in 369 such metrics. Addition-
ally, 9 classical software metrics (such as clone coverage, number
of parameters per method) calculated by ConQAT are part of the
model. The property hierarchy consists of 566 properties. Addi-
tionally, 14 properties are used to describe the quality attributes
of ISO 25010. The quality attributes are targeted by 370 impacts,
which originate from 144 properties.

Since the quality model is based on source code properties, not all
quality attributes are covered equally. Only five top-level quality
attributes (maintainability, functional suitability, reliability, and
performance efficiency) have a high coverage by impacts. Some
quality attributes, such as usability, are not associated with any
measure. It is comprehensible that maintainability and reliability
mostly rely on souce code properties, whereas usability cannot be
assessed by looking at the source code.

5.2 Java Systems
For conducting experiments with different benchmarking bases
and test systems it is important to have a large number of Java
systems available. We used the repository SDS [21, 10], con-
taining about 18.000 open-source Java projects. These projects
have been mostly retrieved from open source databases such as
Sourceforge through a web-crawling approach. In essence, this
repository contains mirrors of the version control repositories of
the before-mentioned databases. Such repositories usually con-
tain not only the current version of a software, but also branches
and tags. Thus, we used a heuristic to identify the directory con-
taining the current version.

The SDS repository only contains the source code, not the bina-
ries. For the quality assessment however, binaries compiled with
the debug-option of the Java compiler are needed. We compiled
all projects in a batch approach, because the effort to manually
configure and compile them is prohibitive. The compilation of
all 18.000 projects took about 30 hours, executed in parallel on
12 personal computers. Of all available projects about 6.000 were
compiled successfully. Others could not be compiled because of
missing external libraries or because of code needed to be gener-
ated during the build process.

We use all successfully compiled systems of the SDS repository
larger than 5.000 LoC, which are 2041 systems. We exclude
smaller systems, because many open source repositories contain
software projects initiated by single persons without finishing
them; these projects then remain in the repository without ever
being used [1, 18]. In our experience, these unused systems are
mostly smaller than 5.000 LoC.

6. STUDY RESULTS
In the following we present the study results organized according
to the research questions. The raw data of the quality analyses
with the different benchmarking bases can be found online4.

6.1 RQ 1 Different Systems
Table 1 shows the correlation coefficients of the rankings for all
pairs of benchmarking bases. The minimal correlation between
two pairs is 0.9912 for BB4 and BB8. Thus, all values are above
0.9 and the criterion defined in the study design is satisfied.

For each test system we calculated the standard deviation be-
tween the results of the different benchmarking bases. The min-
imal standard deviation was 0.0002, the average 0.0061, and the
maximum 0.0235. Since the maximum is below 0.1, the criterion
in the study design is satisfied.

6.2 RQ 2 Different Benchmarking Base Sizes
For each of the six size classes we calculated the rank correlations
of all pairs of benchmarking bases. Table 2 exemplarily shows the
correlation coefficients for the size classes 10 and 500.

Figure 4a shows the scatter-plot of benchmarking bases’ sizes and
correlation coefficients. The visual impression of the scatterplot
suggest a positive correlation between the two plotted variables.
This suggestion is statistically tested by hypothesis H1: We cal-
culate the pearsons correlation coefficient for the values. It results
in a correlation coefficient of 0.87 and a p-value < 2.2E-16. Thus,
hypothesis H10 is rejected in favor of H1A : There is a statistically
significant positive correlation between the size of the benchmark-
ing base and the rank correlation.

Because of Figure 4a we assume an exponential relation between
these two variables. Thus, we added the exponential regression
fitting line, and calculate an exponential correlation, resulting in
a correlation coefficient of 0.91 and a p-value < 2.2E-16.

Figure 4b shows a line diagram of benchmarking bases’ sizes and
the standard deviation. The visual impression of the scatterplot
suggest a negative correlation between the two plotted variables.
This suggestion is statistically tested by hypothesis H2: We calcu-
late the pearsons correlation coefficient for the values. It results
in a correlation coefficient of −0.38 and a p-value < 2.2E-16.
Thus, hypothesis H20 is rejected in favor of H2A : There is a sta-
tistically significant negative correlation between the size of the
benchmarking base and the standard deviation.

Because of Figure 4b we assume an exponential relation between
these two variables. Thus, we added the exponential regression
fitting line, and calculate an exponential correlation, resulting in
a correlation coefficient of −0.49 and a p-value < 2.2E-16.

6.3 RQ 3 Different System Sizes
Table 3a shows the average rank correlation coefficients for bench-
marking bases containing systems of different sizes that have been

4http://www4.in.tum.de/~lochmann/WoSQ2012/



BB1 BB2 BB3 BB4 BB5 BB6 BB7 BB8 BB9 BB10

BB1 1 0,9985 0,9967 0,9926 0,9974 0,9969 0,9980 0,9982 0,9963 0,9965
BB2 1 0,9976 0,9938 0,9981 0,9980 0,9986 0,9974 0,9968 0,9976
BB3 1 0,9947 0,9968 0,9971 0,9975 0,9962 0,9977 0,9966
BB4 1 0,9929 0,9922 0,9933 0,9912 0,9942 0,9923
BB5 1 0,9977 0,9983 0,9966 0,9956 0,9978
BB6 1 0,9979 0,9971 0,9965 0,9978
BB7 1 0,9971 0,9963 0,9978
BB8 1 0,9961 0,9962
BB9 1 0,9955
BB10 1

Table 1: RQ 1 – Rank Correlations5 of Different Benchmarking Bases of the Same Size

BB1 BB2 BB3 BB4 BB5

BB1 1 0,9788 0,9712 0,9767 0,9785
BB2 1 0,9752 0,9756 0,9766
BB3 1 0,9760 0,9674
BB4 1 0,9738
BB5 1

BB1 BB2 BB3 BB4 BB5

BB1 1 0,9971 0,9965 0,9962 0,9961
BB2 1 0,9957 0,9978 0,9964
BB3 1 0,9956 0,9953
BB4 1 0,9978
BB5 1

(a) Benchmarking Bases of Size 10 (b) Benchmarking Bases of Size 500

Table 2: RQ 2 – Rank Correlations5 of Different Benchmarking Bases
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Figure 4: RQ 2 – Influence of the Size of the Benchmarking Base6

Test Systems
small large

Systems in small 0.974 0.967
Benchmarking Base large 0.994 0.992

Test Systems
small large

Systems in small 0.013 0.017
Benchmarking Base large 0.006 0.010

(a) Average Rank Correlation (b) Average Standard Deviation

Table 3: RQ 3 – Benchmarking Bases containing Systems of Different Sizes

5 The values in the table are the correlation coefficients. The p-value for all these correlations is far below 0.05.
6 The dashed lines represent an exponential regression fitting.



applied to test systems of different sizes. We can see that the
benchmarking base containing large systems got better rank cor-
relations for both small and large test systems. The benchmark-
ing base containing small systems got a lower correlation for both
small and large test systems.

Table 3b shows the average standard deviation for benchmarking
bases containing systems of different sizes that have been applied
to test systems of different sizes. Like for the correlations, also
here we can see that benchmarking bases containing large systems
achieved the better results (i.e. its results have lower standard
deviation) than the benchmarking base containing small systems.

7. THREATS TO VALIDITY

Construct Validity. The criteria of ranking correlation and stan-
dard deviation may not adequatly represent the matching between
different results of quality assessments.

Internal Validity. The creation of random benchmarking bases
may be biased. Each benchmarking base was constructed by ran-
domly selecting systems from all available Java systems. Thus,
some systems may be contained in more than one of the gener-
ated benchmarking bases. However, the number of available sys-
tems (2041) is far larger than the benchmarking bases (from 10 to
500 systems). Thus, the overlapping between randomly generated
benchmarking bases should not be significant.

Between the systems contained in the benchmarking base and
the test systems there may be overlappings. This may have an
influence on the results. However, we deliberately selected the
benchmarking base and the test systems in this way, because it
reflects the approach that would likely be taken in an industrial
setting: the systems developed by a company would likely be
included in the benchmarking base while being test systems at
the same time.

Regarding RQ 3, the benchmarking bases containing the large sys-
tems contain more source code in terms of LoC than the bench-
marking bases containing small systems. This could have lead
to the better results of the benchmarking bases containing larger
systems.

External Validity. The threat regarding generalizability of the
results is twofold: First, only open source systems have been used
as study objects. It is unknown if the results also apply for soft-
ware products originating from other domains. Second, we only
used one single quality model for Java source code. Whether these
results are valid for other quality models is unclear. However, for
quality models using static code analysis, we assume good gener-
alizability, because of the large extent of the quality model.

8. CONCLUSION
When applying software metrics for quality assessments, utility
functions are needed. Defining adequate parameters for utility
functions is challenging. In the Quamoco quality assessment ap-
proach we used a benchmarking-inspired paradigm to automati-
cally determine parameters based on a set of comparison systems,
called benchmarking base.

It is a relevant research question how the selection of systems
in the benchmarking base influences the result of quality assess-

ments, and how the benchmarking base should be chosen to obtain
valid and comparable quality assessment results.

To investigate these research questions we conducted a series of
experiments with randomly generated benchmarking bases of dif-
ferent sizes and containing systems of different size. The main
findings of these experiments are:

1. The size of the benchmarking base matters: the bigger the
benchmarking base, the smaller is the influence of the ran-
domly chosen systems. There is a statistically significant
correlation between the size of the benchmarking base and
both the rank correlation and the variance of the quality
assessment results. For a smaller benchmarking base, the
rank correlation is lower and the standard deviation higher,
than for a larger benchmarking base.

2. Our supposition that a benchmarking base containing
small (large) systems works best for assessing small (large)
systems, was not confirmed. Surprisingly, a benchmark-
ing base containing large systems produced better result for
both assessing large and small systems, than a benchmark-
ing base containing small systems.

Based on these findings, we conclude that defining parameters for
utility functions based on a benchmarking approach is feasible.
Furthermore, we found evidence that the single most important
factor for a satisfactory benchmarking base is its size. For a ran-
domly generated benchmarking base of sufficient size, neither the
actually selected systems, nor the size of the systems contained
in it, has a major influence.

For further research there are still several interesting questions.
First, the minimum size for a reliable benchmarking base could
be determined. Second, different criteria for systems contained
in the benchmarking base could be investigated. While in this
article only the size of the systems was considered, also the influ-
ence of the application domain (business information systems vs.
embedded systems) could be investigated.
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